【题目】如图,在平面直角坐标系中,四边形ABCD是以AB为直径的⊙M的内接四边形,点A,B在x轴上,△MBC是边长为2的等边三角形,过点M作直线l与x轴垂直,交⊙M于点E,垂足为点M,且点D平分
.![]()
(1)求过A,B,E三点的抛物线的解析式;
(2)求证:四边形AMCD是菱形;
(3)请问在抛物线上是否存在一点P,使得△ABP的面积等于定值5?若存在,请求出所有的点P的坐标;若不存在,请说明理由.
参考答案:
【答案】
(1)
解:由题意可知,△MBC为等边三角形,点A,B,C,E均在⊙M上,
则MA=MB=MC=ME=2,
又∵CO⊥MB,
∴MO=BO=1,
∴A(﹣3,0),B(1,0),E(﹣1,﹣2),
抛物线顶点E的坐标为(﹣1,﹣2),
设函数解析式为y=a(x+1)2﹣2(a≠0)
把点B(1,0)代入y=a(x+1)2﹣2,
解得:a=
,
故二次函数解析式为:y=
(x+1)2﹣2;
(2)
证明:
![]()
连接DM,
∵△MBC为等边三角形,
∴∠CMB=60°,
∴∠AMC=120°,
∵点D平分弧AC,
∴∠AMD=∠CMD=
∠AMC=60°,
∵MD=MC=MA,
∴△MCD,△MDA是等边三角形,
∴DC=CM=MA=AD,
∴四边形AMCD为菱形(四条边都相等的四边形是菱形);
(3)
解:存在.
理由如下:
设点P的坐标为(m,n)
∵S△ABP=
AB|n|,AB=4
∴
×4×|n|=5,
即2|n|=5,
解得:n=±
,
当
时,
(m+1)2﹣2=
,
解此方程得:m1=2,m2=﹣4
即点P的坐标为(2,
),(﹣4,
),
当n=﹣
时,
(m+1)2﹣2=﹣
,
此方程无解,
故所求点P坐标为(2,
),(﹣4,
).
【解析】此题主要考查了二次函数综合以及菱形的判定方法、三角形面积求法和等边三角形的性质等知识,正确得出E点坐标是解题关键.(1)根据题意首先求出抛物线顶点E的坐标,再利用顶点式求出函数解析式;(2)利用等边三角形的性质结合圆的有关性质得出∠AMD=∠CMD=
∠AMC=60°,进而得出DC=CM=MA=AD,即可得出答案;(3)首先表示出△ABP的面积进而求出n的值,再代入函数关系式求出P点坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】随着我省“大美青海,美丽夏都”影响力的扩大,越来越多的游客慕名而来.根据青海省旅游局《2015年国庆长假出游趋势报告》绘制了如下尚不完整的统计图.

根据以上信息解答下列问题:
(1)2015年国庆期间,西宁周边景区共接待游客万人,扇形统计图中“青海湖”所对应的圆心角的度数是 , 并补全条形统计图;
(2)预计2016年国庆节将有80万游客选择西宁周边游,请估计有多少万人会选择去贵德旅游?
(3)甲乙两个旅行团在青海湖、塔尔寺、原子城三个景点中,同时选择去同一个景点的概率是多少?请用画树状图或列表法加以说明,并列举所有等可能的结果. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.

(1)求证:CD是⊙O的切线;
(2)过点B作⊙O的切线交CD的延长线于点E,BC=6,
.求BE的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】青海新闻网讯:2016年2月21日,西宁市首条绿道免费公共自行车租赁系统正式启用.市政府今年投资了112万元,建成40个公共自行车站点、配置720辆公共自行车.今后将逐年增加投资,用于建设新站点、配置公共自行车.预计2018年将投资340.5万元,新建120个公共自行车站点、配置2205辆公共自行车.
(1)请问每个站点的造价和公共自行车的单价分别是多少万元?
(2)请你求出2016年到2018年市政府配置公共自行车数量的年平均增长率. -
科目: 来源: 题型:
查看答案和解析>>【题目】若关于x的方程x2+(m+1)x+
=0的一个实数根的倒数恰是它本身,则m的值是( )
A.﹣
B.
C.﹣
或 
D.1 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点O在△ABC内,且到三边的距离相等.若∠BOC=120°,则tanA的值为( )

A.
B.
C.
D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直线y=
x+4与x轴、y轴分别交于点A和点B,点C、D分别为线段AB、OB的中点,点P为OA上一动点,PC+PD值最小时点P的坐标为( )
A.(﹣3,0)
B.(﹣6,0)
C.(﹣
,0)
D.(﹣
,0)
相关试题