【题目】据电力部门统计,每天8:00至21:00是用电的高峰期,简称“峰时”,21:00至次日8:00是用电的低谷时期,简称“谷时”,为了缓解供电需求紧张矛盾,某市电力部门于本月初统一换装“峰谷分时”电表,对用电实行“峰谷分时电价”新政策,具体见下表:
![]()
(1)小张家上月“峰时”用电50度,“谷时”用电20度,若上月初换表,则相对于换表前小张家的电费是增多了还是减少了?增多或减少了多少元?请说明理由.
(2)小张家这个月用电95度,经测算比换表前使用95度电节省了5.9元,问小张家这个月使用“峰时电”和“谷时电”分别是多少度?
参考答案:
【答案】(1)若上月初换表,则相对于换表前小张家的电费是节省了2.9元;(2)小张家这个月使用“峰时”用电60度,谷时用电35度.
【解析】
试题分析:(1)分别求出换表前后的电费情况,再进行比较计算即可.
(2)可设小张家这个月使用“峰时”电是x度,则“谷时”电是(95﹣x)度,根据题意列出方程解答即可.
解:(1)换电表前:0.52×(50+20)=36.4(元),
换电表后:0.55×50+0.30×20=27.5+6=33.5(元),
33.5﹣36.4=﹣2.9(元).
答:若上月初换表,则相对于换表前小张家的电费是节省了2.9元;
(2)设小张家这个月使用“峰时”电是x度,则“谷时”电是(95﹣x)度,根据题意得
0.55x+0.30(95﹣x)=0.52×95﹣5.9,
解之,得x=60,
95﹣x=95﹣60=35.
答:小张家这个月使用“峰时”用电60度,谷时用电35度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,∠BAC=90°,AD⊥BC,垂足为D,则给出下列结论:
①AB与AC互相垂直
②AD与AC互相垂直
③点C到AB的垂线段是线段AB
④点A到BC的距离是线段AD
⑤线段AB的长度是点B到AC的距离
⑥线段AB是点B到AC的距离.
其中正确的有( )

A.2个 B.3个 C.4个 D.5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:如图,二次函数y=ax2+bx+c的图象与x轴交于A、B两点,其中A点坐标为(﹣1,0),点C(0,5),另抛物线经过点(1,8),M为它的顶点.

(1)求抛物线的解析式;
(2)求△MCB的面积S△MCB.
-
科目: 来源: 题型:
查看答案和解析>>【题目】用“☆”定义一种新运算:对于任意有理数a和b,规定a☆b=ab2+2ab+a.
如:1☆3=1×32+2×1×3+1=16.
(1)求(﹣2)☆3的值;
(2)若(
☆3)☆(﹣
)=8,求a的值;(3)若2☆x=m,(
x)☆3=n(其中x为有理数),试比较m,n的大小. -
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90O,得到的点B的坐标为_______
-
科目: 来源: 题型:
查看答案和解析>>【题目】县医院住院部在连续10天测量某病人的体温与36℃的上下波动数据为:0.2, 0.3, 0.1, 0.1, 0, 0.2, 0.1, 0.1, 0.1, 0,则对这10天中该病人的体温波动数据分析不正确的是( )
A. 平均数为0.12 B. 众数为0.1
C. 中位数为0.1 D. 方差为0.02
-
科目: 来源: 题型:
查看答案和解析>>【题目】探索与研究:
方法1:如图(a),对任意的符合条件的直角三角形绕其锐角顶点旋转90°所得,所以
∠BAE=90°,且四边形ACFD是一个正方形,它的面积和四边形ABFE面积相等,而四边形ABFE面积等于Rt△BAE和Rt△BFE的面积之和,根据图示写出证明勾股定理的过程;
方法2:如图(b),是任意的符合条件的两个全等的Rt△BEA和Rt△ACD拼成的,你能根据图示再写一种证明勾股定理的方法吗?

相关试题