【题目】如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论中正确结论的个数是 ( )
![]()
①△ABG≌△AFG;②∠EAG=450;③BG=GC; ④AG∥CF; ⑤S△FGC=3.6
A. 2个 B. 3个 C. 4个 D. 5个
参考答案:
【答案】D
【解析】分析:①用HL证明△ABG≌△AFG;②由△ADE≌△AFE,△ABG≌△AFG,得到∠EAG=
∠BAD;③在直角三角形CEG中,由勾股定理求GC的长;④根据基本图形“等腰三角形+角平分线→平行线”证明;⑤由GF:EG=3:5,得S△FCG:S△ECG=3:5.
详解:①根据轴对称的性质得,△ADE≌△AFE,
所以AD=AF,∠AFE=∠D=90°.
因为AB=AD,∠B=90°,所以AB=AF,
因为AG=AG,所以△ABG≌△AFG.
则①正确;
②因为△ADE≌△AFE,△ABG≌△AFG,
所以∠DAE=∠FAE,∠BAG=∠FAG,
所以∠EAG=∠FAE+∠FAE=
∠BAD=
×90°=45°.
则②正确;
③因为△ADE≌△AFE,△ABG≌△AFG,
所以ED=EF,GB=GF,所以EG=DE+BG,
设BG=x,则CG=FG=6-x,DE=2,CE=4,EG=x+2=x+2.
Rt△CEG中,由勾股定理得,CG2+CE2=EG2,
所以(6-x)2+42=(x+2)2,解得x=3.
则CG=6-x=3,又BG=x=3,所以BG=CG.
则③正确;
④因为△ABG≌△AFG,所以∠AGB=∠AGF.
因为BG=CG,BG=GF,所以CG=GF,所以∠GCF=∠GFC.
因为∠BGE=∠GCF+∠GFC,所以∠AGB=∠GCF,所以AG∥CF.
则④正确;
⑤因为GF=3,GE=5,所以S△FGC=
S△GCE=
×GC·CE=
×
×3×4=3.6.
则⑤正确.
故选D.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠C=90°,AC=8cm,BC=6cm,点P、Q同时从点C出发,以1cm/s的速度分别沿CA、CB匀速运动.当点Q到达点B时,点P、Q同时停止运动.过点P作AC的垂线l交AB于点R,连接PQ、RQ,并作△PQR关于直线l对称的图形,得到△PQ′R.设点Q的运动时间为t(s),△PQ′R与△PAR重叠部分的面积为S(cm2).

(1)t为何值时,点Q′恰好落在AB上?
(2)求S与t的函数关系式,并写出t的取值范围;
(3)S能否为
cm2?若能,求出此时的t值;若不能,说明理由. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在数轴上点A表示的有理数为﹣6,点B表示的有理数为6,点P从点A出发以每秒4个单位长度的速度在数轴上由A向B运动,当点P到达点B后立即返回,仍然以每秒4个单位长度的速度运动至点A停止运动,设运动时间为t(单位:秒).
(1)求t=1时点P表示的有理数;
(2)求点P与点B重合时的t值;
(3)在点P沿数轴由点A到点B再回到点A的运动过程中,求点P与点A的距离(用含t的代数式表示);
(4)当点P表示的有理数与原点的距离是2个单位长度时,请求出所有满足条件的t值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平行四边形ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,AB=6,EF=2,则BC长为( )

A. 10 B. 8 C. 14 D. 12
-
科目: 来源: 题型:
查看答案和解析>>【题目】正方形网格中(网格中的每个小正方形边长是1),△ABC的顶点均在格点上,请在所给的直角坐标系中解答下列问题:
(1)作出△ABC绕点A逆时针旋转90°的△AB1C1.
(2)作出△ABC关于原点O成中心对称的△A1B2C2.
(3)请直接写出以A1、B2、C2为顶点的平行四边形的第四个顶点D的坐标________.

-
科目: 来源: 题型:
查看答案和解析>>【题目】某校初二年级数学考试,(满分为100分,该班学生成绩均不低于50分)作了统计分析,绘制成如图频数分布直方图和频数、频率分布表,请你根据图表提供的信息,解答下列问题:
分组
49.5~59.5
59.5~69.5
69.5~79.5
79.5~89.5
89.5~100.5
合计
频数
2
a
20
16
4
50
频率
0.04
0.16
0.40
0.32
b
1

(1)频数、频率分布表中a= ,b= ;(答案直接填在题中横线上)
(2)补全频数分布直方图;
(3)若该校八年级共有600名学生,且各个班级学生成绩分布基本相同,请估计该校八年级上学期期末考试成绩低于70分的学生人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,梯形ABCD中,AD∥BC,∠ABC=2∠BCD=2α,点E在AD上,点F在DC上,且∠BEF=∠A.

(1)∠BEF=(用含α的代数式表示);
(2)当AB=AD时,猜想线段EB、EF的数量关系,并证明你的猜想;
(3)当AB≠AD时,将“点E在AD上”改为“点E在AD的延长线上,且AE>AB,AB=mDE,AD=nDE”,其他条件不变(如图),求
的值(用含m,n的代数式表示)
相关试题