【题目】如图所示,某教学活动小组选定测量山顶铁塔AE的高,他们在30m高的楼CD的底部点D测得塔顶A的仰角为45°,在楼顶C测得塔顶A的仰角为36°52′.若小山高BE=62m,楼的底部D与山脚在同一水平面上,求铁塔的高AE.(参考数据:sin36°52′≈0.60,tan36°52′≈0.75)
![]()
参考答案:
【答案】该铁塔的高AE为58米.
【解析】试题分析:根据楼高和山高可求出EF,继而得出AF,在Rt△AFC中表示出CF,在Rt△ABD中表示出BD,根据CF=BD可建立方程,解出即可.
试题解析:如图,过点C作CF⊥AB于点F.
设塔高AE=x,作CF⊥AB于点F,
则四边形BDCF是矩形,
∴CD=BF=30m,CF=BD,
∵在Rt△ADB中,∠ADB=45°,
∴AB=BD=x+62,
∵在Rt△ACF中,∠ACF=36°52′,CF=BD=x+62,AF=x+62﹣30=x+32,
∴tan36°52′=
≈0.75,
∴x=58.
答:该铁塔的高AE为58米.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】以下说法合理的是( )
A. 小明在10次抛图钉的试验中发现3次钉尖朝上,由此他说钉尖朝上的概率是30%
B. 抛掷一枚普通的正六面体骰子,出现6的概率是
的意思是每6次就有1次掷得6C. 某彩票的中奖机会是2%,那么如果买100张彩票一定会有2张中奖。
D. 在一次课堂进行的试验中,甲、乙两组同学估计硬币落地后,正面朝上的概率分别为0.48和0.51。
-
科目: 来源: 题型:
查看答案和解析>>【题目】某公司生产A种产品,它的成本是6元/件,售价是8元/件,年销售量为5万件.为了获得更好的效益,公司准备拿出一定的资金做广告,根据经验,每年投入的广告费是x万元,产品的年销售量将是原销售量的y倍,且y与x之间满足我们学过的二种函数(即一次函数和二次函数)关系中的一种,它们的关系如下表:
x(万元)
0
0.5
1
1.5
2
…
y
1
1.275
1.5
1.675
1.8
…
(1)求y与x的函数关系式(不要求写出自变量的取值范围)
(2)如果把利润看作是销售总额减去成本费用和广告费用,试求出年利润W(万元)与广告费用x(万元)的函数关系式,并计算每年投入的广告费是多少万元时所获得的利润最大?
(3)如果公司希望年利润W(万元)不低于14万元,请你帮公司确定广告费的范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】青年志愿者爱心小分队赴山村送温暖,准备为困难村民购买一些米面.已知购买1袋大米、4袋面粉,共需240元;购买2袋大米、1袋面粉,共需165元.
(1)求每袋大米和面粉各多少元?
(2)如果爱心小分队计划购买这些米面共40袋,总费用不超过2140元,那么至少购买多少袋面粉?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,直角坐标系中,点 A( 2,2)、B(0,1)点 P 在 x 轴上,且△PAB 的等腰三角形,则满足条件的点 P 共有()个

A.1B.2C.3D.4
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,CA=CB,∠ABC=72°,BD是高线,BE是角平分线,若AB=12cm,则CE=_______cm,则∠DBE=_____度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠C=90°,点D在BC上,点E在AB上,且DE∥AC,AE=5,DE=2,DC=3,动点P从点A出发,沿边AC以每秒2个单位长的速度向终点C运动,同时动点F从点C出发,在线段CD上以每秒1个单位长的速度向终点D运动,设运动时间为t秒.
(1)线段AC的长=________;
(2)当△PCF与△EDF相似时,求t的值.

相关试题