【题目】为了解我市的空气质量情况,某环保兴趣小组从环境监测网随机抽取了若干天的空气质量情况作为样本进行统计,绘制了如图所示的条形统计图和扇形统计图(部分信息未给出). ![]()
请你根据图中提供的信息,解答下列问题:
(1)计算被抽取的天数;
(2)请补全条形统计图,并求扇形统计图中表示“优”的扇形的圆心角度数;
(3)请估计该市这一年(365天)达到“优”和“良”的总天数.
参考答案:
【答案】
(1)解:扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,
∴被抽取的总天数为:12÷20%=60(天)
(2)解:轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;
表示优的圆心角度数是
360°=72°,
如图所示:
![]()
(3)解:样本中优和良的天数分别为:12,36,
一年(365天)达到优和良的总天数为:
×365=292(天).
故估计本市一年达到优和良的总天数为292天
【解析】(1)根据扇形图中空气为优所占比例为20%,条形图中空气为优的天数为12天,即可得出被抽取的总天数;(2)轻微污染天数是60﹣36﹣12﹣3﹣2﹣2=5天;利用360°乘以优所占的份额即可得优的扇形的圆心角度数;(3)利用样本中优和良的天数所占比例乘以一年(365天)即可求出达到优和良的总天数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知菱形ABCD的对角线相交于点O,延长AB至点E,使BE=AB,连接CE.

(1)求证:BD=EC;
(2)若∠E=50°,求∠BAO的大小. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,三角形BCO是三角形BAO经过某种变换得到的.
(1)写出A,C的坐标;
(2)图中A与C的坐标之间的关系是什么?
(3)如果三角形AOB中任意一点M的坐标为(x,y),那么它的对应点N的坐标是什么?

-
科目: 来源: 题型:
查看答案和解析>>【题目】在平面直角坐标系中,将坐标为(0,0),(2,1),(2,4),(0,3)的点依次连结起来形成一个图案.
(1)这四个点的横坐标保持不变,纵坐标变成原来的
,将所有的四个点用线段依次连结起来,所得的图案与原图案相比有什么变化?(2)纵、横坐标分别变成原来的2倍呢?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一次函数y1=kx+b的图象与反比例函数y2=
的图象相交于点A(2,3)和点B,与x轴相交于点C(8,0). 
(1)求这两个函数的解析式;
(2)当x取何值时,y1>y2 . -
科目: 来源: 题型:
查看答案和解析>>【题目】将△ABC绕点A按逆时针方向旋转θ度,并使各边长变为原来的n倍,得△AB′C′,即如图①,我们将这种变换记为[θ,n].

(1)如图①,对△ABC作变换[60°,
]得△AB′C′,则S△AB′C′:S△ABC=;直线BC与直线B′C′所夹的锐角为度;
(2)如图②,△ABC中,∠BAC=30°,∠ACB=90°,对△ABC 作变换[θ,n]得△AB′C′,使点B、C、C′在同一直线上,且四边形ABB'C'为矩形,求θ和n的值;
(3)如图③,△ABC中,AB=AC,∠BAC=36°,BC=1,对△ABC作变换[θ,n]得△AB′C′,使点B、C、B′在同一直线上,且四边形ABB′C′为平行四边形,求θ和n的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,某公路(可视为
轴)的同一侧有A、B、C三个村庄,要在公路边建一货栈D,向A、B、C三个村庄送农用物资,路线是D→A→B→C→D或D→C→B→A→D.试问在公路边是否存在一点D,使送货路线之和最短?若存在,请在图中画出点D所在的位置,简要说明作法;若不存在,请说明你的理由.
相关试题