【题目】如图,AB是⊙O的直径,点C是⊙O上一点,∠BAC的平分线AD交⊙O于点D,过点D作DE⊥AC交AC的延长线于点E.
(1)求证:DE是⊙O的切线;
(2)如果∠BAC=60°,AD=4,求AC长.
![]()
参考答案:
【答案】(1)答案见解析;(2)
.
【解析】试题分析:(1)连接OD,由AD为角平分线,得到一对角相等,再由OA=OD,得到一对角相等,等量代换得到一对内错角相等,利用内错角相等两直线平行可得AE与OD平行,再由DE⊥AC,可得DE⊥OD,即DE为圆O的切线,得证;
(2)作OH⊥AC于H,则AH=CH,由已知易得四边形ODEH为矩形,从而有OH=DE=2,在Rt△OAH中, 即可求得AC的长.
试题解析:(1)连接OD,
∵∠BAC的平分线AD交⊙O于点D,
∴∠1=∠2,
∵OA=OD,
∴∠1=∠3,
∴∠2=∠3,
∴OD∥AE,
∵DE⊥AE,
∴DE⊥OD,
∴DE是⊙O的切线;
(2)作OH⊥AC于H,则AH=CH,
∵∠BAC=60°,
∴∠2=30°,
在Rt△ADE中,DE=
AD=2,
易得四边形ODEH为矩形,
∴OH=DE=2,
在Rt△OAH中,∵∠OAH=60°,
∴AH=
=
,
∴AC=2AH=
.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】某大学公益组织计划购买
两种的文具套装进行捐赠,关注留守儿童经洽谈,购买
套装比购买
套装多用20元,且购买5套
套装和4套
套装共需820元.(1)求购买一套
套装文具、一套
套装各需要多少元?(2)根据该公益组织的募捐情况和捐助对象情况,需购买
两种套装共60套,要求购买
两种套装的总费用不超过5240元,则购买
套装最多多少套? -
科目: 来源: 题型:
查看答案和解析>>【题目】探究与发现:
如图1所示的图形,像我们常见的学习用品--圆规.我们不妨把这种图形叫做“规形图”,那么在这一个简单的图形中,到底隐藏了哪些数学知识呢?请解决以下问题:
(1)观察“规形图”,试探究∠BPC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下问题:
①如图2:已知△ABC,BP平分∠ABC,CP平分∠ACB,直接写出∠BPC与∠A之间存在的等量关系为: .
迁移运用:如图3:在△ABC中,∠A=80°,点O是∠ABC,∠ACB角平分线的交点,点P是∠BOC,∠OCB角平分线的交点,若∠OPC=100°,则∠ACB的度数 .
②如图4:若D点是△ABC内任意一点,BP平分∠ABD,CP平分∠ACD.直接写出∠BDC、∠BPC、∠A之间存在的等量关系为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】在如图所示的平面直角坐标系中,直线
与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过A,C两点,与x轴的另一交点为点B,其对称轴是
.(1)求抛物线解析式.
(2)抛物线上是否存在点M(点m不与点C重合),使△MAB与△ABC的面积相等?若存在,求出点M的坐标;若不存在,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,A(1,1),B(-1,1),C(-1,-2),D(1,-2).把一条长为2016个单位长度且没有弹性的细线(线的粗细忽略不计)的一端固定在点A处,并按A-B-C-D…的规律绕在ABCD的边上,则细线另一端所在位置的点的坐标是( )

A. (0,-2) B. (-1,-1) C. (-1,0) D. (1,-2)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知∠1+∠2﹦180°,∠3﹦∠B,则DE∥BC,下面是王华同学的推导过程﹐请你帮他在括号内填上推导依据或内容.

证明:
∵∠1+∠2﹦180(已知),
∠1﹦∠4 (_________________),
∴∠2﹢_____﹦180°.
∴EH∥AB(___________________________________).
∴∠B﹦∠EHC(________________________________).
∵∠3﹦∠B(已知)
∴ ∠3﹦∠EHC(____________________).
∴ DE∥BC(__________________________________).
相关试题