【题目】如图,在Rt△ABC中,AB=CB,BO⊥AC,DA平分∠BAC,DE⊥AC,连接EF,下列结论:①tan∠ADB=2;②图中有4对全等三角形;③若将△DEF沿EF折叠,则点D不一定落在AC上;④BD=BF;⑤S四边形DFOE=S△AOF,上述结论中正确的个数是( )
![]()
A.1个 B.2个 C.3个 D.4个
参考答案:
【答案】C.
【解析】
试题解析:①由折叠可得BD=DE,而DC>DE,∴DC>BD,∴tan∠ADB≠2,故①错误;
②图中的全等三角形有△ABF≌△AEF,△ABD≌△AED,△FBD≌△FED,(由折叠可知)
∵OB⊥AC,
∴∠AOB=∠COB=90°,
在Rt△AOB和Rt△COB中,
,
∴Rt△AOB≌Rt△COB(HL),
则全等三角形共有4对,故②正确;
③∵AB=CB,BO⊥AC,把△ABC折叠,
∴∠ABO=∠CBO=45°,∠FBD=∠DEF,
∴∠AEF=∠DEF=45°,∴将△DEF沿EF折叠,可得点D一定在AC上,故③错误;
④∵OB⊥AC,且AB=CB,
∴BO为∠ABC的平分线,即∠ABO=∠OBC=45°,
由折叠可知,AD是∠BAC的平分线,即∠BAF=22.5°,
又∵∠BFD为三角形ABF的外角,
∴∠BFD=∠ABO+∠BAF=67.5°,
易得∠BDF=180°-45°-67.5°=67.5°,
∴∠BFD=∠BDF,
∴BD=BF,故④正确.
⑤连接CF,
![]()
∵△AOF和△COF等底同高,
∴S△AOF=S△COF,
∵∠AEF=∠ACD=45°,
∴EF∥CD,
∴S△EFD=S△EFC,
∴S四边形DFOE=S△COF,
∴S四边形DFOE=S△AOF,
故⑤正确;
正确的有3个,
故选C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列一元二次方程中,没有实数根的是( )
A. x2﹣2x=0 B. x2+4x﹣1=0 C. 2x2﹣4x+3=0 D. 3x2=5x﹣2
-
科目: 来源: 题型:
查看答案和解析>>【题目】方程x2=4x的解是( )
A. x="4" B. x="2" C. x=4或x="0" D. x=0
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一条抛物线与x轴相交于A、B两点,其顶点P在折线C-D-E上移动,若点C、D、E的坐标分别为(-1,4)、(3,4)、(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为( )

A. 1 B. 2 C. 3 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法中,正确的个数有( )
①同位角相等
②三角形的高在三角形内部③一个多边形的边数每增加一条,这个多边形的内角和就增加180°,
④两个角的两边分别平行,则这两个角相等
A. 1个 B. 2个 C. 3 个 D. 4个
-
科目: 来源: 题型:
查看答案和解析>>【题目】若二次函数y=ax2+bx的图象开口向下,则a可以为_________(写出一个即可).
-
科目: 来源: 题型:
查看答案和解析>>【题目】命题“等角的余角相等”写成“如果…,那么…”的形式 .
相关试题