【题目】如图,直线l:y=
分别交x轴、y轴于点A和点A1,过点A1作A1B1⊥l,交x轴于点B1,过点B1作B1A2⊥x轴,交直线l于点A2;过点A2作A2B2⊥l,交x轴于点B2,过点B2作B2A3⊥x轴,交直线l于点A3;依此规律...若图中阴影△A1OB1的面积为S1,阴影△A2B1B2的面积S2,阴影△A3B2B3的面积S3...,则Sn=__________.
![]()
【答案】![]()
【解析】
由直线l:y=
可求出与x轴交点A的坐标,与y轴交点A1的坐标,进而得到OA,OA1的长,也可求出Rt△OAA1的各个内角的度数,是一个特殊的直角三角形,以下所作的三角形都是含有30°角的直角三角形,然后这个求出S1、S2、S3、S4、……根据规律得出Sn.
对于直线l:y=
,当x=0时,y=1;当y=0时,x=-![]()
∴A(-
,0)A1(0,1)
∴∠OAA1=30°
又∵A1B1⊥l,
∴∠OA1B1=30°,
在Rt△OA1B1中,
,
∴
;
同理可求出:
,
∴
;
依次可求出:
……
因此:
=![]()
故答案为:
.