【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点M在BC边上,且∠MDF=∠ADF. ![]()
(1)求证:△ADE≌△BFE.
(2)连接EM,如果FM=DM,判断EM与DF的关系,并说明理由.
参考答案:
【答案】
(1)证明:∵AD∥BC,
∴∠ADE=∠BFE,
∵E为AB的中点,
∴AE=BE,
在△AED和△BFE中,
,
∴△AED≌△BFE(AAS)
(2)解:EM与DM的关系是EM垂直且平分DF;理由如下:
连接EM,如图所示:
由(1)得:△AED≌△BFE,
∴DE=EF,
∵∠MDF=∠ADF,∠ADE=∠BFE,
∴∠MDF=∠BFE,
∴FM=DM,
∴EM⊥DF,
∴ME垂直平分DF.
![]()
【解析】(1)由平行线的性质得出∠ADE=∠BFE,由E为AB的中点,得出AE=BE,由AAS证明△AED≌△BFE即可;(2)由△AED≌△BFE,得出对应边相等DE=EF,证明FM=DM,由三角形的三线合一性质得出EM⊥DF,即可得出结论.
【考点精析】掌握线段垂直平分线的性质是解答本题的根本,需要知道垂直于一条线段并且平分这条线段的直线是这条线段的垂直平分线;线段垂直平分线的性质定理:线段垂直平分线上的点和这条线段两个端点的距离相等.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.
(1)求出A型、B型污水处理设备的单价;
(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案. -
科目: 来源: 题型:
查看答案和解析>>【题目】小王去早市为餐馆选购蔬菜,他指着标价为每斤3元的豆角问摊主:“这豆角能便宜吗?”摊主:“多买按八折,你要多少斤?”小王报了数量后摊主同意按八折卖给小王,并说:“之前一人只比你少买5斤就是按标价,还比你多花了3元呢!”小王购买豆角的数量是( )
A.25斤
B.20斤
C.30斤
D.15斤 -
科目: 来源: 题型:
查看答案和解析>>【题目】若一个三角形的两边长分别为2和4,则该三角形的周长可能是( )
A.6
B.7
C.11
D.12 -
科目: 来源: 题型:
查看答案和解析>>【题目】要反映某地某月气温的变化情况最适合采用( )
A. 条形统计图 B. 扇形统计图 C. 折线统计图 D. 频数直方图
-
科目: 来源: 题型:
查看答案和解析>>【题目】今年泉州元宵期间,某数学兴趣小组为了了解游客最喜欢的花灯类型,随机抽取部分游客进行调查,并将调查的结果绘制成下面两幅不完整的统计图:

(1)本次共抽取的游客人数为 ,“传统”型所对应的圆心角为 °;
(2)将条形统计图补充完整;
(3)据了解,今年观赏花灯的游客约100万人,请你估计“最喜欢现代型”花灯的人数是多少?
-
科目: 来源: 题型:
查看答案和解析>>【题目】高速公路上,从3千米处开始,每隔4千米经过一个限速标志牌,并且从10千米处开始,每隔9千米经过一个速度监控仪,司机小王刚好在19千米的A处第一次同时经过这两种设施,那么,司机小王第二次同时经过这两种设施需要从A处继续行驶( )千米.
A.36
B.37
C.55
D.91
相关试题