【题目】如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,BD=8cm.点M从点A出发,沿AC的方向匀速运动,同时直线PQ由点B出发,沿BA的方向匀速运动,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t≤5).线段CM的长度记作y甲 , 线段BP的长度记作y乙 , y甲和y乙关于时间t的函数变化情况如图所示.![]()
(1)由图2可知,点M的运动速度是每秒 cm,当t为何值时,四边形PQCM是平行四边形?在图2中反映这一情况的点是;
(2)设四边形PQCM的面积为ycm2 , 求y与t之间的函数关系式;
(3)是否存在某一时刻t,使S四边形PQCM=
S△ABC?若存在,求出t的值;若不存在,说明理由;
(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.
参考答案:
【答案】
(1)解:2;E(
,
)
(2)
解:∵PQ∥AC,
∴△PBQ∽△ABC,
∴△PBQ为等腰三角形,PQ=PB=t,
∴
,即
,
解得:BF=
t,
∴FD=BD﹣BF=8﹣
t,
又∵MC=AC﹣AM=10﹣2t,
∴y=
(PQ+MC)FD=
(t+10﹣2t)(8﹣
t)=
t2﹣8t+40
(3)
解:存在;
∵S△ABC=
ACBD=
×10×8=40,
当S四边形PQCM=
S△ABC时,y=
t2﹣8t+40=20,
解得:t=10﹣5
,或t=10+5
(不合题意,舍);
即:t=10﹣5
时,S四边形PQCM=
S△ABC
(4)
解:假设存在某一时刻t,使得M在线段PC的垂直平分线上,则MP=MC,
过M作MH⊥AB,交AB与H,如图所示:
![]()
∵∠A=∠A,∠AHM=∠ADB=90°,
∴△AHM∽△ADB,
∴
,
又∵AD=6,
∴
,
∴HM=
t,AH=
t,
∴HP=10﹣t﹣
t=10﹣
t,
在Rt△HMP中,MP2=(
t)2+(10﹣
t)2=
t2﹣44t+100,
又∵MC2=(10﹣2t)2=100﹣40t+4t2,
∵MP2=MC2,
∴
t2﹣44t+100=100﹣40t+4t2,
解得 t1=
,t2=0(舍去),
∴t=
s时,点M在线段PC的垂直平分线上.
【解析】解:(1)由图2得,点M的运动速度为2cm/s,PQ的运动速度为1cm/s,
∵四边形PQCM是平行四边形,则PM∥QC,
∴AP:AB=AM:AC,
∵AB=AC,
∴AP=AM,即10﹣t=2t,
解得:t=
,
∴当t=
时,四边形PQCM是平行四边形,此时,图2中反映这一情况的点是E(
,
)
所以答案是:2,E(
,
).
【考点精析】通过灵活运用相似三角形的应用,掌握测高:测量不能到达顶部的物体的高度,通常用“在同一时刻物高与影长成比例”的原理解决;测距:测量不能到达两点间的举例,常构造相似三角形求解即可以解答此题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,点A为半圆O直径MN所在直线上一点,射线AB垂直于MN,垂足为A,半圆绕M点顺时针转动,转过的角度记作a;设半圆O的半径为R,AM的长度为m,回答下列问题:

(1)探究:若R=2,m=1,如图1,当旋转30°时,圆心O′到射线AB的距离是;如图2,当a=°时,半圆O与射线AB相切;
(2)如图3,在(1)的条件下,为了使得半圆O转动30°即能与射线AB相切,在保持线段AM长度不变的条件下,调整半径R的大小,请你求出满足要求的R,并说明理由.
(3)发现:如图4,在0°<α<90°时,为了对任意旋转角都保证半圆O与射线AB能够相切,小明探究了cosα与R、m两个量的关系,请你帮助他直接写出这个关系;cosα=(用含有R、m的代数式表示)
(4)拓展:如图5,若R=m,当半圆弧线与射线AB有两个交点时,α的取值范围是 , 并求出在这个变化过程中阴影部分(弓形)面积的最大值(用m表示) -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,圆柱形玻璃容器高19cm,底面周长为60cm,在外侧距下底1.5cm的点A处有一只蜘蛛,在蜘蛛正对面的圆柱形容器的外侧,距上底1.5cm处的点B处有一只苍蝇,蜘蛛急于捕捉苍蝇充饥,请你帮蜘蛛计算它沿容器侧面爬行的最短距离.

-
科目: 来源: 题型:
查看答案和解析>>【题目】三角形ABC为等腰直角三角形,其中∠A=90°,BC长为6.
(1)建立适当的直角坐标系,并写出各个顶点的坐标.
(2)将(1)中各顶点的横坐标不变,将纵坐标都乘-1,与原图案相比,所得的图案有什么变化?
(3)将(1)中各顶点的横坐标都乘-2,纵坐标保持不变,与原图案相比,所得的图案有什么变化?
-
科目: 来源: 题型:
查看答案和解析>>【题目】在一次设计比赛中,小军10次射击的成绩是:6环1次,7环3次,8环2次,9环3次,10环1次,关于他的射击成绩,下列说法正确的是( )
A.极差是2环
B.中位数是8环
C.众数是9环
D.平均数是9环 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要 个小立方体,王亮所搭几何体的表面积为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,是一个长方体的三视图(单位:cm),根据图中数据计算这个长方体的体积是_______cm3.

相关试题