【题目】钓鱼岛是我国渤海海峡上的一颗明珠,渔产丰富.一天某渔船离开港口前往该海域捕鱼.捕捞一段时间后,发现一外国舰艇进入我国水域向钓鱼岛驶来,渔船向渔政部门报告,并立即返航.渔政船接到报告后,立即从该港口出发赶往钓鱼岛.下图是渔船及渔政船与港口的距离s和渔船离开港口的时间t之间的函数图象.(假设渔船与渔政船沿同一航线航行)
![]()
(1)直接写出渔船离港口的距离s和它离开港口的时间t的函数关系式.
(2)求渔船和渔政船相遇时,两船与钓鱼岛的距离.
(3)在渔政船驶往钓鱼岛的过程中,求渔船从港口出发经过多长时间与渔政船相距30海里?
参考答案:
【答案】(1)当0≤t≤5时,s=30 ;当5<t≤8时,s=150;当8<t≤13时,s=-30t+390;(2)60;(3)9.6
小时或10.4小时
【解析】
试题分析:(1)分三种情况写出函数解析式,(2)首先利用待定系数法求出渔政船离港口的距离与渔船离开港口的时间的函数关系式,然后进行计算;(3)分相遇前和相遇之后两种情况分别求出t的值.
试题解析:(1)当0≤t≤5时,s=30;当5<t≤8时,s=150;当8<t≤13时,s=-30t+390;
(2)渔政船离港口的距离与渔船离开港口的时间的函数关系式设为s=kt+b
解得: k=45 b=-360 ∴s=45t-360
解得 t=10 s=90
渔船离钓鱼岛距离为 150-90=60 (海里)
(3) S渔=-30t+390 S渔政=45t-360
分两种情况:
遇之前,S渔-S渔政=30
-30t+390-(45t-360)=30
解得t=(或9.6)
相遇之后,S渔政-S渔=30
45t-360-(-30t+390)=30
解得 t=(或10.4)
∴当渔船离开港口9.6小时或10.4小时时,两船相距30海里.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A(0,1),M(3,2),N(4,4) , 动点P从点A出发,沿y
轴以每秒1个单位长的速度向上移动,且过点P的直线l:y=-x+b也随之移动,设移动时间为 t 秒.(直线y = kx+b平移时k不变)

(1)当t=3时,求 l 的解析式;
(2)若点M,N位于l 的异侧,确定 t 的取值范围.
-
科目: 来源: 题型:
查看答案和解析>>【题目】若方程x2-6x+k=0的一根为1,则k=___________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法中,不成立的是( )
A.弦的垂直平分线必过圆心
B.弧的中点与圆心的连线垂直平分这条弧所对的弦
C.垂直于弦的直线经过圆心,且平分这条弦所对的弧
D.垂直于弦的直径平分这条弦
-
科目: 来源: 题型:
查看答案和解析>>【题目】随机掷两枚质地均匀的正方体骰子,骰子的六个面上分别刻有1到6的点数,则这两枚骰子向上的一面点数都是奇数的概率是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=BC,BE⊥AC于点E,AD⊥BC于点D,
∠BAD=45°,AD与BE交于点F,连接CF.

(1)求证:BF=2AE;
(2)若CD=
,求AD的长. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,∠BAC=90°,AD⊥BC,垂足为D,则给出下列结论:
①AB与AC互相垂直
②AD与AC互相垂直
③点C到AB的垂线段是线段AB
④点A到BC的距离是线段AD
⑤线段AB的长度是点B到AC的距离
⑥线段AB是点B到AC的距离.
其中正确的有( )

A.2个 B.3个 C.4个 D.5个
相关试题