【题目】如图,已知:∠BCF=∠B+∠F.求证:AB//EF .
![]()
证明:经过点C作CD//AB
∴∠BCD=∠B.( )
∵∠BCF=∠B+∠F,(已知)
∴∠ ( )=∠F.( )
∴CD//EF.( )
∴AB//EF( )
参考答案:
【答案】证明见解析.
【解析】试题分析:根据平行线的性质填第一个空;根据等式的性质填第二个空;根据平行线的判定填第三个空;根据平行公理的推论填第三个空即可.
试题解析:证明:经过点C作CD∥AB,
∴∠BCD=∠B(两直线平行,内错角相等);
∵∠BCF=∠B+∠F,(已知),∠BCF=∠BCD+∠DCF,
∴∠DCF=∠F(等式的性质),
∴CD∥EF(内错角相等,两直线平行,
∴AB∥EF(平行于同一直线的两直线平行).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正方形ABCD的边AB在数轴上,数轴上点A表示的数为﹣1,正方形ABCD的面积为16.

(1)数轴上点B表示的数为 ;
(2)将正方形ABCD沿数轴水平移动,移动后的正方形记为A′B′C′D′,移动后的正方形A′B′C′D′与原正方形ABCD重叠部分的面积为S.
①当S=4时,画出图形,并求出数轴上点A′表示的数;
②设正方形ABCD的移动速度为每秒2个单位长度,点E为线段AA′的中点,点F在线段BB′上,且BF=
BB′.经过t秒后,点E,F所表示的数互为相反数,直接写出t的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,AB=AC=6cm,BC=4cm,点D为AB的中点.
⑴如果点P在线段BC上以1cm/s的速度由点B向点C运动,同时,点Q在线段CA上由点C向点A运动.
①若点Q的运动速度与点P的运动速度相等,经过1秒后,△BPD与△CPQ是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为______cm/s时,在某一时刻也能够使△BPD与△CPQ全等.
⑵若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都按逆时针方向沿△ABC的三边运动.求经过多少秒后,点P与点Q第一次相遇,并写出第一次相遇点在△ABC的哪条边上?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示, AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,则∠3=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一拱形公路桥,圆弧形桥拱的水面跨度AB=80 m,桥拱到水面的最大高度为20 m.(1)求桥拱的半径.
(2)现有一艘宽60 m,顶部截面为长方形且高出水面9 m的轮船要经过这座拱桥,这艘轮船能顺利通过吗?请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列7个事件中:(1)掷一枚硬币,正面朝上.(2)从一副没有大小王的扑克牌中抽出一张恰为黑桃.(3)随意翻开一本有400页的书,正好翻到第100页.(4)天上下雨,马路潮湿.(5)你能长到身高4米.(6)买奖券中特等大奖.(7)掷一枚正方体骰子,得到的点数<7.其中(将序号填入题中的横线上即可)确定事件为________;不确定事件为________;不可能事件为________;必然事件为________;不确定事件中,发生可能性最大的是________,发生可能性最小的是________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为弘扬中华传统文化,黔南州近期举办了中小学生“国学经典大赛”.比赛项目为:A.唐诗;B.宋词;C.论语;D.三字经.比赛形式分“单人组”和“双人组”.
(1)小丽参加“单人组”,她从中随机抽取一个比赛项目,恰好抽中“三字经”的概率是多少?
(2)小红和小明组成一个小组参加“双人组”比赛,比赛规则是:同一小组的两名队员的比赛项目不能相同,且每人只能随机抽取一次,则恰好小红抽中“唐诗”且小明抽中“宋词”的概率是多少?请用画树状图或列表的方法进行说明.
相关试题