【题目】某土特产公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售.按计划20辆车都要装运,每辆汽车只能装运同一种土特产,且必须装满,根据下表提供的信息,解答以下问题:
土特产品种 | 甲 | 乙 | 丙 |
每辆汽车运载量(吨) | 8 | 6 | 5 |
每吨土特产获利(百元) | 12 | 16 | 10 |
(1)设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,求y与x之间的函数关系式.
(2)如果装运每种土特产的车辆都不少于3辆,那么车辆的安排方案有几种并写出每种安排方案.
(3)若要使此次销售获利最大,应采用(2)中哪种安排方案?并求出最大利润的值.
参考答案:
【答案】
(1)解:∵8x+6y+5(20﹣x﹣y)=120,
∴y=20﹣3x.
∴y与x之间的函数关系式为y=20﹣3x.
(2)解:由x≥3,y=20﹣3x≥3,即20﹣3x≥3可得3≤x≤5
,
又∵x为正整数,
∴x=3,4,5.
故车辆的安排有三种方案,即:
方案一:甲种3辆乙种11辆丙种6辆;
方案二:甲种4辆乙种8辆丙种8辆;
方案三:甲种5辆乙种5辆丙种10辆
(3)解:设此次销售利润为W百元,
W=8x12+6(20﹣3x)16+5[20﹣x﹣(20﹣3x)]10=﹣92x+1920.
∵W随x的增大而减小,又x=3,4,5
∴当x=3时,W最大=1644(百元)=16.44万元.
答:要使此次销售获利最大,应采用(2)中方案一,即甲种3辆,乙种11辆,丙种6辆,最大利润为16.44万元.
【解析】(1)因为公司组织20辆汽车装运甲、乙、丙三种土特产共120吨去外地销售,设装运甲种土特产的车辆数为x,装运乙种土特产的车辆数为y,则装运丙特产的车辆数为(20﹣x﹣y),且8x+6y+5(20﹣x﹣y)=120,整理即得y与x之间的函数关系式.(2)因为装运每种土特产的车辆都不少于3辆,所以x≥3,y≥3,20﹣x﹣y≥3,结合(1)的答案,就可得到关于x的不等式组,又因x是正整数,从而可求x的取值,进而确定方案.(3)可设此次销售利润为W百元,由表格可得W=8x12+6(20﹣3x)16+5[20﹣x﹣(20﹣3x)]10=﹣92x+1920,根据y随x的变化规律,结合(2)中所求,就可确定使利润最大的方案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】平面直角坐标系中,一点P(﹣2,3)关于原点的对称点P′的坐标是
-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=2x2﹣3x+4与y轴的交点坐标是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了倡导“节约用水,从我做起”,黄冈市政府决定对市直机关500户家庭的用水情况作一次调查,市政府调查小组随机抽查了其中100户家庭一年的月平均用水量(单位:吨).并将调查结果制成了如图所示的条形统计图.

(1)请将条形统计图补充完整;
(2)求这100个样本数据的平均数,众数和中位数;
(3)根据样本数据,估计黄冈市直机关500户家庭中月平均用水量不超过12吨的约有多少户? -
科目: 来源: 题型:
查看答案和解析>>【题目】若单项式2x2ya+b与-3xa-by4是同类项,则它们的积为_____________
-
科目: 来源: 题型:
查看答案和解析>>【题目】中学生上学带手机的现象越来越受到社会的关注,为此媒体记者随机调查了某校若干名学生上学带手机的目的,分为四种类型:A接听电话;B收发短信;C查阅资料;D游戏聊天.并将调查结果绘制成图1和图2的统计图(不完整),请根据图中提供的信息,解答下列问题:
(1)此次抽样调查中,共调查了 名学生;
(2)将图1、图2补充完整;
(3)现有4名学生,其中A类两名,B类两名,从中任选2名学生,求这两名学生为同一类型的概率(用列表法或树状图法).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知直线y=kx+6与x轴、y轴分别交于A、B两点,且△ABO的面积为12.

(1)求k的值;
(2)若点P为直线AB的一动点,P点运动到什么位置时,△PAO使以OA为底的等腰三角形?求出此时点P的坐标;
(3)在(2)的条件下,坐标平面内是否存在点M,使以P、B、O、M为顶点组成的平行四边形为菱形?若存在,求出点M坐标;若不存在,试说明理由.
相关试题