【题目】如图,∠AOB=30°,点M,N分别在边OA,OB上,OM=5,ON=12,点P,Q分别在边OB,OA上运动,连接MP,PQ,QN,则MP+PQ+QN的最小值为 ______ .
![]()
参考答案:
【答案】13
【解析】试题分析:首先作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值,易得△ONN′为等边三角形,△OMM′为等边三角形,∠N′OM′=90°,继而求得答案.
解:作M关于OB的对称点M′,作N关于OA的对称点N′,连接M′N′,即为MP+PQ+QN的最小值.
根据轴对称的定义可知:∠N′OQ=∠M′OB=30°,∠ONN′=60°,OM′=OM=5,ON′=ON=12,
∴△ONN′为等边三角形,△OMM′为等边三角形,
∴∠N′OM′=90°,
∴在Rt△M′ON′中,M′N′=
=13.
故答案为:13.
![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】同学们都知道,|4-(-2)|表示4与-2的差的绝对值,实际上也可理解为4与-2两数在数轴上所对应的两点之间的距离;同理|x-3|也可理解为x与3两数在数轴上所对应的两点之间的距离,试探索并完成填空.
(1)求|4-(-2)|=______,|-3-5|=______;
(2)若|x-2|=5,则x=______.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小亮在上午8时,9时30分,10时,12时四次到室外的阳光下观察向日葵的头茎随太阳转动的情况,无意之中,他发现这四个时刻向日葵影子的长度各不相同,那么影子最长的时刻为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
(1)40°26'+30°30'30″÷6;
(2)13°53'×3-32°5'31″.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列计算正确的是( )
A.a2+a3=a5B.a2a3=a6C.(a2)3=a5D.a5÷a3=a2
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市2017年实现生产总值达280亿的目标,用科学记数法表示“280亿”为( )
A. 28×109 B. 2.8×108 C. 2.8×109 D. 2.8×1010
-
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两城市之间开通了动车组高速列车.已知每隔2h有一列速度相同的动车组列车从甲城开往乙城.如图,OA是第一列动车组列车离开甲城的路程s(km)与运行时间t(h)的函数图象,BC是一列从乙城开往甲城的普通快车距甲城的路程s(km)与运行时间t(h)的函数图象.请根据图中的信息,解答下列问题:
(1)从图象看,普通快车发车时间比第一列动车组列车发车时间 1h(填”早”或”晚”),点B的纵坐标600的实际意义是 ;
(2)请直接在图中画出第二列动车组列车离开甲城的路程s(km)与时间t(h)的函数图象;
(3)若普通快车的速度为100km/h,
①求第二列动车组列车出发多长时间后与普通快车相遇?
②请直接写出这列普通快车在行驶途中与迎面而来的相邻两列动车组列车相遇的时间间隔.

相关试题