【题目】如图所示,A.B两地之间有一条河,原来从A地到B地需要经过桥DC,沿折线A→D→C→B到达B地,现在新建了桥EF,可直接沿直线AB从A地到达B地.BC=1000m,∠A=45°,∠B=37°.桥DC和AB平行,则现在从A地到达B地可比原来少走多少路程?(结果精确到1m.参考数据:
,sin37°≈0.60,cos37°≈0.80)
![]()
参考答案:
【答案】从A地到B地可比原来少走约446m.
【解析】分析:分别构造直角三角形将线段AD、DC、CB求出来,然后与线段AB的长相比较即能得到答案.
详解:如图,过点D作DH⊥AB于H,DG∥CB交AB于G.
![]()
∵DC∥AB,
∴四边形DCBG为平行四边形。
∴DC=GB,GD=BC=1000.
∴两条路线路程之差为AD+DGAG.
在Rt△DGH中,
DH=DGsin37°≈1000×0.60=600m,
GH=DGcos37°≈1000×0.80≈800m.
在Rt△ADH中,
AD=
DH≈1.41×600≈846m.
AH=DH≈600m.
∴AD+DGAG=(846+1000)(600+800)≈446(m).
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,已知抛物线y=x2+bx+c经过A、B、C三点,已知B(4,0),C(2,﹣6).
(1)求该抛物线的解析式和点A的坐标;
(2)点D(m,n)(﹣1<m<2)在抛物线图象上,当△ACD的面积为
时,求点D的坐标;(3)在(2)的条件下,设抛物线的对称轴为l,点D关于l的对称点为E,能否在抛物线图象和l上分别找到点P、Q,使得以点D、E、P、Q为顶点的四边形为平行四边形?若能,求出点P的坐标;若不能,请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】将图1中的正方形剪开得到图2,则图2中共有4个正方形;将图2中的一个正方形剪开得到图3,图3中共有7个正方形;将图3中4个较小的正方中的一个剪开得到图4,则图4中共有10个正方形,照这个规律剪下去……

(1)根据图中的规律补全下表:
图形标号
1
2
3
4
5
6

n
正方形个数
1
4
7
10

(2)求第几幅图形中有2020个正方形?
-
科目: 来源: 题型:
查看答案和解析>>【题目】根据给出的数轴及已知条件,解答下面的问题:

(1)已知点A,B,C表示的数分别为1,
,-3.观察数轴,与点A的距离为3的点表示的数是 ,A,B两点之间的距离为 。(2)数轴上,点B关于点A的对称点表示的数是 ;
(3)若将数轴折叠,使得A点与C点重合,则与B点重合的点表示的数是 ;若此数轴上M,N两点之间的距离为2019(M在N的左侧),且当A点与C点重合时,M点与N点也恰好重合,则点M表示的数是 ,点N表示的数是 。
(4)若数轴上P,Q两点间的距离为a(P在Q的左侧),表示数b的点到P,Q的两点的距离相等,将数轴折叠,当P点与Q点重合时,点P表示的数是 ,点Q表示的数是 (用含a,b的式子表示这两个数)。
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中有Rt△ABC,∠A=90°,AB=AC,A(-2,0)、
B(0,1)、C(d,2)。

(1)求d的值;
(2)将△ABC沿x轴的正方向平移,在第一象限内B、C两点的对应点B′、C′正好落在某反比例函数图
像上。请求出这个反比例函数和此时的直线B′C′的解析式;
(3)在(2)的条件下,直线B′C′交y轴于点G。问是否存在x轴上的点M和反比例函数图像上的点P,
使得四边形PGMC′是平行四边形。如果存在,请求出点M和点P的坐标;如果不存在,请说明理由。
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校开展课外体育活动,决定开展:篮球、乒乓球、踢毽子、跑步四种活动项目.为了解学生最喜欢哪一种活动项目(每人只选取一种).随机抽取了部分学生进行调查,并将调查结果绘成如下统计图,请你结合图中信息解答下列问题.
(1)样本中最喜欢篮球项目的人数所占的百分比为 ,其所在扇形统计图中对应的圆心角度数是 度;
(2)请把条形统计图补充完整;
(3)若该校有学生1000人,请根据样本估计全校最喜欢踢毽子的学生人数约是多少?

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,正方形网格中,△ABC为格点三角形(即三角形的顶点都在格点上).
(1)把△ABC沿BA方向平移后,点A移到点A1,在网格中画出平移后得到的△A1B1C1;
(2)把△A1B1C1绕点A1按逆时针方向旋转90°,在网格中画出旋转后的△A1B2C2;
(3)如果网格中小正方形的边长为1,求点B经过(1)、(2)变换的路径总长.

相关试题