【题目】如图,经过原点的抛物线y=﹣x2+2mx(m>0)与x轴的另一个交点为A.过点P(1,m)作直线PM⊥x轴于点M,交抛物线于点B,记点B关于抛物线对称轴的对称点为C(点B,点C不重合).连接CB,CP.![]()
(1)当m=3时,求点A的坐标及BC的长;
(2)当m>1时,连接CA,问m为何值时CA⊥CP?
(3)当m>1时过点P作PE⊥PC且PE=PC,问是否存在m,使得点E落在坐标轴上?若存在,求出所有满足要求的m的值,并定出相对应的点E坐标;若不存在,请说明理由.
参考答案:
【答案】
(1)
解:当m=3时,y=﹣x2+6x=﹣x(x﹣6).
令y=0得:﹣x(x﹣6)=0,解得x=0或x=6,
∴点A的坐标为(6,0).
∴抛物线的对称轴为直线x=3.
∵B、C关于直线x=3对称,
∴BC=2×(3﹣1)=4
(2)
解:如图1所示:过点C作AH⊥x轴,垂足为H.
![]()
∵抛物线y=﹣x2+2mx的对称轴为x=m,
∴点B和点C直线x=m对称.
∵当x=1时,y=2m﹣1,
∴点B的坐标为(1,2m﹣1).
∴PB=m﹣1.
∵点B与点C关于直线x=m对称,
∴C(2m﹣1,2m﹣1).
∴BC=2m﹣2.
∴H(2m﹣1,0).
∴AH=1,CH=2m﹣1.
∵∠ACH=∠PCB=90°,
∴∠ACH=∠BCP.
又∵∠AHC=∠PCB=90°,
∴△ACH∽△PCB.
∴
=
,即
=
,
∴m= ![]()
(3)
解:当m>1时,BC=2(m﹣1),PM=m,BP=m﹣1.
①若点E在x轴上时,如图2所示:
![]()
∵∠CPE=90°,
∴∠MPE+∠BPC=∠MPE+∠MEP=90°,
∴∠BPC=∠MEP.
在△BPC和△MEP中,
,
∴△BPC≌△MEP.
∴BC=PM.
∴2(m﹣1)=m,解得m=2,
∴E(2,0).
若点E在y轴上,如图3所示:过点P作PN⊥y轴与点N.
![]()
∵∠EPC=90°,
∴∠EPB+∠BPC=90°.
∵∠NPE+∠EPB=90°,∠NEP=∠EPB,
∴∠BPC=∠EPN.
在△EPN和△CPB中, ![]()
∴△BPC≌△NPE.
∴BP=NP=OM=1,
∴m﹣1=1,
∴m=2
∴E(0,4).
综上所述,当m=2时,点E的坐标为(2,0)或(0,4)
【解析】(1)把m=3代入得到抛物线的解析式,然后令y=0得:﹣x(x﹣6)=0,从而可求得点A的坐标,利用抛物线的对称性可得到抛物线的对称轴为x=m,然后利用抛物线的对称性可得到BC的长;(2)过点C作AH⊥x轴,垂足为H.先求得点B和点C的坐标,由点B、点P和点C的坐标可得到PB、BC的长,然后由点C和点A的坐标可求得CH,AH的长,接下来,再证明△ACH∽△PCB,最后依据相似三角形的性质列方程求解即可;(3)当m>1时,BC=2(m﹣1),PM=m,BP=m﹣1.①若点E在x轴上时,先证明△BPC≌△MEP,依据全等三角形的性质可得到BC=PM,然后依据BC=PM可得到关于m的方程,从而可求得m的值,故此可得到E的坐标;②若点E在y轴上,过点P作PN⊥y轴与点N.然后证明△BPC≌△NPE,则BP=NP=OM=1,则m﹣1=1,可求得m=2,于是可求得点E的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某课桌生产厂家研究发现,倾斜12°﹣24°的桌面有利于学生保持躯体自然姿势.根据这一研究,厂家决定将水平桌面做成可调节角度的桌面.新桌面的设计图如图1所示,AB可绕点A旋转,在点C处安装一根可旋转的支撑臂CD,AC=30cm.

(1)如图2,当∠BAC=24°时,CD⊥AB,求支撑臂CD的长.
(2)如图3,当∠BAC=12°,求AD的长(结果保留根号).
[参考数据:sin24°=0.40,cos24°=0.91,tan24°=0.46,sin12°=0.20]
-
科目: 来源: 题型:
查看答案和解析>>【题目】小平所在的学习小组发现,车辆转弯时,能否顺利通过直角弯道的标准是,车辆是否可以行驶到和路的边界夹角是45°的位置(如图1中 ②的位置).例如,图2是某巷子的俯视图,巷子路面宽4m,转弯处为直角,车辆的车身为矩形ABCD,CD与DE、CE的夹角都是45°时,连接EF,交CD于点G,若GF的长度至少能达到车身宽度,即车辆能通过.

(1)小平认为长8m,宽3m的消防车不能通过该直角转弯,请你帮他说明理由;
(2)小平提出将拐弯处改为圆弧(
和
是以O为圆心,分别以OM和ON为半径的弧),长8m,宽3m的消防车就可以通过该弯道了,具体的方案如图,其中OM⊥OM′,你能帮小平算出,ON至少为多少时,这种消防车可以通过该巷子?
-
科目: 来源: 题型:
查看答案和解析>>【题目】[发现]如图∠ACB=∠ADB=90°,那么点D在经过A,B,C三点的圆上(如图①)

[思考]如图②,如果∠ACB=∠ADB=a(a≠90°)(点C,D在AB的同侧),那么点D还在经过A,B,C三点的⊙O上吗?
我们知道,如果点D不在经过A,B,C三点的圆上,那么点D要么在⊙O外,要么在⊙O内,以下该同学的想法说明了点D不在⊙O外.请结合图④证明点D也不在⊙O内.
【证】
[结论]综上可得结论,如果∠ACB=∠ADB=α(点C,D在AB的同侧),那么点D在经过A,B,C三点的圆上,即:A、B、C、D四点共圆.
[应用]利用上述结论解决问题:
如图⑤,已知△ABC中,∠C=90°,将△ACB绕点A顺时针旋转α度(α为锐角)得△ADE,连接BE、CD,延长CD交BE于点F;
(1)用含α的代数式表示∠ACD的度数;
(2)求证:点B、C、A、F四点共圆;
(3)求证:点F为BE的中点. -
科目: 来源: 题型:
查看答案和解析>>【题目】【阅读】
如图1,在平面直角坐标系xOy中,已知点A(a,0)(a>0),B(2,3),C(0,3).过原点O作直线l,使它经过第一、三象限,直线l与y轴的正半轴所成角设为θ,将四边形OABC的直角∠OCB沿直线l折叠,点C落在点D处,我们把这个操作过程记为FZ[θ,a].
(1)【理解】
若点D与点A重合,则这个操作过程为FZ[ , ];
(2)【尝试】
若点D恰为AB的中点(如图2),求θ;
(3)经过FZ[45°,a]操作,点B落在点E处,若点E在四边形0ABC的边AB上,求出a的值;若点E落在四边形0ABC的外部,直接写出a的取值范围;
(4)【探究】
经过FZ[θ,a]操作后,作直线CD交x轴于点G,交直线AB于点H,使得△ODG与△GAH是一对相似的等腰三角形,直接写出FZ[θ,a]. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在矩形ABCD中,AB=
,BC=2,对角线AC、BD相交于点O,过点O作OE垂直AC交AD于点E,则AE的长是( ) 
A.
B.
C.1
D.1.5 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在梯形ABCD中,AB∥CD,E是BC的中点,EF⊥AD于点F,AD=4,EF=5,则梯形ABCD的面积是( )

A.40
B.30
C.20
D.10
相关试题