【题目】如图,在平面直角坐标系xOy中,一次函数y=3x+2的图象与y轴交于点A,与反比例函数y=
(k≠0)在第一象限内的图象交于点B,且点B的横坐标为1.过点A作AC⊥y轴交反比例函数y=
(k≠0)的图象于点C,连接BC.
(1)求反比例函数的表达式.
(2)求△ABC的面积.
![]()
参考答案:
【答案】(1)反比例函数的表达式为y=
;
(2)S△ABC=
.
【解析】
试题分析:(1)先由一次函数y=3x+2的图象过点B,且点B的横坐标为1,将x=1代入y=3x+2,求出y的值,得到点B的坐标,再将B点坐标代入y=
,利用待定系数法即可求出反比例函数的表达式;
(2)先由一次函数y=3x+2的图象与y轴交于点A,求出点A的坐标为(0,2),再将y=2代入y=
,求出x的值,那么AC=
.过B作BD⊥AC于D,则BD=yB﹣yC=5﹣2=3,然后根据S△ABC=
ACBD,将数值代入计算即可求解.
试题解析:(1)∵一次函数y=3x+2的图象过点B,且点B的横坐标为1,
∴y=3×1+2=5,
∴点B的坐标为(1,5).
∵点B在反比例函数y=
的图象上,
∴k=1×5=5,
∴反比例函数的表达式为y=
;
(2)∵一次函数y=3x+2的图象与y轴交于点A,
∴当x=0时,y=2,
∴点A的坐标为(0,2),
∵AC⊥y轴,
∴点C的纵坐标与点A的纵坐标相同,是2,
∵点C在反比例函数y=
的图象上,
∴当y=2时,2=
,解得x=
,
∴AC=
.
过B作BD⊥AC于D,则BD=yB﹣yC=5﹣2=3,
∴S△ABC=
ACBD=
×
×3=
.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图①,在6×6的方格纸中,给出如下三种变换:P变换,Q变换,R变换.将图形F沿x轴向右平移1格得到图形F1,称为作1次P变换;将图形F沿y轴翻折得到图形F2,称为作1次Q变换;将图形F绕坐标原点顺时针旋转90°得到图形F3,称为作1次R变换.规定:PQ变换表示先作1次Q变换,再作1次P变换;QP变换表示先作1次P变换,再作1次Q变换;Rn变换表示作n次R变换,解答下列问题:

(1)作R4变换相当于至少作__ __次Q变换.
(2)请在图②中画出图形F作R2017变换后得到的图形F4.
(3)PQ变换与QP变换是否是相同的变换?请在图③中画出PQ变换后得到的图形F5,在图④中画出QP变换后得到的图形F6.
-
科目: 来源: 题型:
查看答案和解析>>【题目】单项式﹣xy2的系数是( )
A.1
B.﹣1
C.2
D.3 -
科目: 来源: 题型:
查看答案和解析>>【题目】(﹣2)×3的结果是( )
A. 6 B. ﹣6 C. 1 D. ﹣5
-
科目: 来源: 题型:
查看答案和解析>>【题目】一个不透明的袋中装有5个黄球,13个黑球和22个红球,它们除颜色外都相同.
(1)小明和小红玩摸球游戏,规定每人摸球后再将摸到的球放回去为一次游戏.若摸到黑球小明获胜,摸到黄球小红获胜,这个游戏对双方公平吗?请说明你的理由;
(2)现在裁判想从袋中取出若干个黑球,并放入相同数量的黄球,使得这个游戏对双方公平,问取出了多少黑球?
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列运算正确的是( )
A.5x2y﹣4x2y=x2y
B.x﹣y=xy
C.x2+3x3=4x5
D.5x3﹣2x3=2 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,平面直角坐标系中,四边形OABC为矩形,点A,B的坐标分别为(4,0),(4,3),动点M,N分别从O,B同时出发.以每秒1个单位的速度运动.其中,点M沿OA向终点A运动,点N沿BC向终点C运动.过点M作MP⊥OA,交AC于P,连接NP,已知动点运动了x秒.
(1)P点的坐标为多少(用含x的代数式表示);
(2)试求△NPC面积S的表达式,并求出面积S的最大值及相应的x值;
(3)当x为何值时,△NPC是一个等腰三角形?简要说明理由.

相关试题