【题目】某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)
(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?
(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?
参考答案:
【答案】(1)熟练工加工1件A型服装需要2小时,加工1件B型服装需要1小时;(2)该服装公司执行规定后违背了广告承诺,理由见解析.
【解析】试题分析:(1)根据题目中2个等量关系列出
,求出结果
;(2)通过一次函数的增减性求出最大值为2800,小于开始的承诺3000,故可以判断违背了广告承诺。
试题解析:
解:(1)设熟练工加工1件
型服装需要x小时,加工1件
型服装需要y小时.
由题意得:
,
解得:![]()
答:熟练工加工1件
型服装需要2小时,加工1件
型服装需要1小时.……4分
当一名熟练工一个月加工
型服装
件时,则还可以加工
型服装
件.
![]()
![]()
又∵
≥
,解得:
≥![]()
,
随着
的增大则减小
∴当
时,
有最大值
.
![]()
∴该服装公司执行规定后违背了广告承诺. .
-
科目: 来源: 题型:
查看答案和解析>>【题目】分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:若|x|=2,|y|=3求x+y的值.
情况①若x=2,y=3时,x+y=5
情况②若x=2,y=﹣3时,x+y=﹣1
情况③若x=﹣2,y=3时,x+y=1
情况④若x=﹣2,y=﹣3时,x+y=﹣5
所以,x+y的值为1,﹣1,5,﹣5.
几何的学习过程中也有类似的情况:
问题(1):已知点A,B,C在一条直线上,若AB=8,BC=3,则AC长为多少?
通过分析我们发现,满足题意的情况有两种
情况①当点C在点B的右侧时,如图1,此时,AC=
情况②当点C在点B的左侧时,如图2,此时,AC=
通过以上问题,我们发现,借助画图可以帮助我们更好的进行分类.
问题(2):如图3,数轴上点A和点B表示的数分别是﹣1和2,点C是数轴上一点,且BC=2AB,则点C表示的数是多少?
仿照问题1,画出图形,结合图形写出分类方法和结果.
问题(3):点O是直线AB上一点,以O为端点作射线OC、OD,使∠AOC=60°,OCOD,求∠BOD的度数.画出图形,直接写出结果.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在一长方形休闲广场的四角都设计一块半径相同的四分之一圆的花坛,若圆形的半径为r米,广场长为m米,宽为n米.
(1)请列式表示广场空地的面积;
(2)若休闲广场的长为40米,宽为25米,圆形花坛的半径为3米,求广场空地的面积(计算结果保留π)

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC为等边三角形,AE=CD,AD,BE相交于点P,BQ⊥AD于Q,PQ=3,PE=1.
(1)求证:BE=AD;
(2)求AD的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)比较大小;
①|﹣2|+|3| |﹣2+3|;
②|4|+|3| |4+3|;
③|﹣
|+|﹣
| |﹣
+(﹣
)|;④|﹣5|+|0| |﹣5+0|.
(2)通过(1)中的大小比较,猜想并归纳出|a|+|b|与|a+b|的大小关系,并说明a,b满足什么关系时,|a|+|b|=|a+b|成立?
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,∠ACB=90°,D是BC的中点,DE⊥BC,CE∥AD,若AC=2,∠ADC=30°,下列说法:四边形ACED是平行四边形,△BCE是等腰三角形,四边形ACEB的周长是10+2
,④四边形ACEB的面积是16.正确的个数是 ( )

A. 2个 B. 3个 C. 4个 D. 5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】有三个有理数a,b,c,已知a=
,(n为正整数)且a与b互为相反数,b与c互为倒数.(1)当n为奇数时你能求出a,b,c各是几吗?
(2)当n为偶数时,你能求a,b,c三数吗?若能请算出结果,不能请说明理由.
(3)根据(1)中的结论,求:ab﹣b﹣(b﹣c)2015的值.
相关试题