【题目】如图,∠A=∠B=90°,AB=7,AD=2,BC=3,如果边AB上的点P使得以P,A,D为顶点的三角形和以P,B,C为顶点的三角形相似,则这样的P点共有几个( )
![]()
A. 1 B. 2 C. 3 D. 4
参考答案:
【答案】C
【解析】
根据相似三角形的判定与性质,当若点A,P,D分别与点B,C,P对应,与若点A,P,D分别与点B,P,C对应,分别分析得出AP的长度即可.
若点A,P,D分别与点B,C,P对应,即△APD∽△BCP,
∴
,
∴
,
∴AP27AP+6=0,
∴AP=1或AP=6,
当AP=1时,由BC=3,AD=2,BP=6,
∴
,
又∵∠A=∠B=90°,
∴△APD∽△BCP.
当AP=6时,由BC=3,AD=2,BP=1,
又∵∠A=∠B=90°,
∴△APD∽△BCP.
若点A,P,D分别与点B,P,C对应,即△APD∽△BPC.
∴
,
∴
,
∴AP=
.
检验:当AP=
时,∵BP=
,AD=2,BC=3,
∴
,
又∵∠A=∠B=90°,
∴△APD∽△BPC.
因此,点P的位置有三处,即在线段AP的长为1、
、6,
故选:C.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点P是∠AOB内任意一点,且∠AOB=40°,点M和点N分别是射线OA和射线OB上的动点,当△PMN周长取最小值时,则∠MPN的度数为( )

A. 140° B. 100° C. 50° D. 40°
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知:方格纸中的每个小方格都是边长为1个单位的正方形,在建立平面直角坐标系后,△ABC的顶点均在格点上,点C的坐标为(4,-1).
(1)请以y轴为对称轴,画出与△ABC对称的△A1B1C1,并直接写出点A1、B1、C1的坐标;
(2)△ABC的面积是 .
(3)点P(a+1,b-1)与点C关于x轴对称,则a= ,b= .

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在△ABC中,AB=AC,∠A=36°,BD,CE是角平分线,则图中的等腰三角形共有

A. 8个 B. 7个 C. 6个 D. 5个
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,在△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD交BD的延长线于点E,CE=1,延长CE、BA交于点F.

(1)求证:△ADB≌△AFC;
(2)求BD的长度.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图一段抛物线:y=﹣x(x﹣3)(0≤x≤3),记为C1,它与x轴交于点O和A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3,如此进行下去,直至得到C10,若点P(28,m)在第10段抛物线C10上,则m的值为( )

A. 1 B. ﹣1 C. 2 D. ﹣2
-
科目: 来源: 题型:
查看答案和解析>>【题目】将抛物线c1:
沿x轴翻折,得到抛物线c2,如图1所示.(1)请直接写出抛物线c2的表达式;
(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与
轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;
②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.

相关试题