【题目】阅读下面材料:
小昊遇到这样一个问题:如图1,在△ABC中,∠ACB=90°,BE是AC边上的中线,点D在BC边上,CD:BD=1:2,AD与BE相交于点P,求
的值.![]()
(1)小昊发现,过点A作AF∥BC,交BE的延长线于点F,通过构造△AEF,经过推理和计算能够使问题得到解决(如图2).
请回答:
的值为 .
(2)参考小昊思考问题的方法,解决问题:
如图3,在△ABC中,∠ACB=90°,点D在BC的延长线上,AD与AC边上的中线BE的延长线交于点P,DC:BC:AC=1:2:3.
①求
的值;
(3)②若CD=2,则BP= .
参考答案:
【答案】
(1)![]()
(2)过点A作AF∥DB,交BE的延长线于点F,如图,
![]()
设DC=k,由DC:BC=1:2得BC=2k,DB=DC+BC=3k.
∵E是AC中点,
∴AE=CE.
∵AF∥DB,
∴∠F=∠1.
在△AEF和△CEB中,
,
∴△AEF≌△CEB,
∴EF=BE,AF=BC=2k.
∵AF∥DB,
∴△AFP∽△DBP,
∴
=
=
=
=
.
∴
的值为 ![]()
(3)6
【解析】解:(1)
的值为
.
提示:易证△AEF≌△CEB,则有AF=BC.
设CD=k,则DB=2k,AF=BC=3k,
由AF∥BC可得△APF∽△DPB,
即可得到
=
=
.
所以答案是:
;
·(3)②当CD=2时,BC=4,AC=6,
∴EC=
AC=3,EB=
=5,
∴EF=BE=5,BF=10.
∵
=
(已证),
∴
=
,
∴BP=
BF=
×10=6.
所以答案是6.
【考点精析】解答此题的关键在于理解勾股定理的概念的相关知识,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,将矩形纸片ABCD按如下顺序折叠:对折、展平,得折痕EF(如图①);沿GC折叠,使点B落在EF上的点B′处(如图②);展平,得折痕GC(如图③),沿GH折叠,使点C落在DH上的C′处(如图④);沿GC′折叠(如图⑤);展平,得折痕GC′,GH(如图⑥).
(1)求图②中∠BCB′=______度;
(2)图⑥中的△GCC′是_______三角形.


-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,AB的垂直平分线DE交BC的延长线于点F,若∠F=30°,DE=1,试求EF的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在四边形ABCD中,AD∥BC,E是AB的中点,连接DE并延长交CB的延长线于点F,点G在边BC上,且∠GDF=∠ADF.连接EG,判断EG与DF的位置关系,并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC三个内角的平分线交于点O,点D在CA的延长线上,且DC=BC,AD=AO,若∠BAC=80°,则∠BCA的度数为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】把两个含有45°角的直角三角板ACB和DEC如图放置,点A,C,E在同一直线上,点D在BC上,连接BE,AD,AD的延长线交BE于点F.
(1)求证:△ADC≌△BEC;
(2)猜想AD与EB是否垂直?并说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知△ABC中,AB=AC=10cm,BC=8cm,点D为AB的中点.
(1)如果点P在线段BC上以3cm/s的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动.
①若点Q的运动速度与点P的运动速度相等,经过1s后,△BPD与△CQP是否全等,请说明理由;
②若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使△BPD与△CQP全等?
(2)若点Q以②中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿△ABC三边运动,求经过多长时间点P与点Q第一次在△ABC的哪条边上相遇?

相关试题