【题目】小明和小丽为更好的掌握一元二次方程根的判断情况,两人玩一个游戏:
在一个不透明口袋中装有分别标有 -1,0,1,2的四个小球,除了数字不同之外,这些小球完全一样.
(1)从中任取1球,此小球是非负数的概率是__________.
(2)小明从四球中任取两球,数字和记为m,若一元二次方程有实根,小明赢,无实根小丽赢.这个游戏公平吗?请你用树状图或列举法分别求出小明、小丽赢的概率,并说明理由.
【答案】(1);(2)不公平,P(小明赢)=
,P(小丽赢)=
,图表见解析
【解析】
(1)四个数字中非负数有3个,直接用概率公式求解即可;
(2)先列表得出所有等可能的结果,再根据方程有实数根求出m的范围,然后由概率公式分别求出小明赢和小丽赢的概率,进行比较即可解答.
(1)根据题意,从中任取1球,抽取的数字是非负数的情况有3种,所以P= ,
故答案为:;
(2)用列举法表示所有的可能性如下:
不公平.理由为:
∵方程有实根
∴△=4-4m≥0
∴m≤1
又∵m≠0
∴m≤1且m≠0时一元二次方程有实根.
由表知,总共有12种可能性,每种可能出现的机会相等,其中小明赢占6种,小丽赢占4种.
∴P(小明赢)=,
P(小丽赢)=,
∵,
∴不公平.
科目:初中数学 来源: 题型:
【题目】为了科学普及新型冠状病毒肺炎防护知识,提升学生的自我防护意识和能力,某中学开展线上“战疫情复课复学”科普知识竞赛活动,竞赛试卷满分100分.活动结束后,从参赛的七年级学生中随机抽取了30名同学的成绩(单位:分),收集数据如下:
91,93,88,79,92,82,93,93,98,98,89,96,78,100,93,
98,95,93,96,88,99,98,75,80,86,92,90,88,96,93
并将数据整理后,绘制以下不完整的统计表(图1)、频数分布直方图(图2)和扇形统计图(图3).
请根据图表中的信息解答下列各题:
(1)填空:________,
________;
(2)补全频数分布直方图.若成绩在“85分到90分以下”为“成绩良好”,请你求出扇形统计图中“成绩良好”部分的圆心角的度数;
(3)成绩达到“90分及以上”为“成绩优秀”.现需分别从组的甲、乙和
组的丙、丁四位同学中,随机选取两人参加全校决赛,请用画树状图或列表法求出选中的两人恰好是在同一个小组的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了丰富同学们的课余生活,冬威中学开展以“我最喜欢的课外活动小组”为主题的调查活动,围绕在绘画、剪纸、舞蹈、书法四类活动小组中,你最喜欢的哪一类?的问题,在全校范围内随机抽取部分学生进行问卷调查,将调查结果整理后绘制成如图所示的不完整的条形统计图,其中最喜欢绘画小组的学生人数占所调查人数的,请你根据图中提供的信息回答下列问题:
(1)在这次调查中,一共抽取了多少名学生;
(2)请通过计算补全条形统计图;
(3)若冬威中学共有800名学生,请你估计该中学最喜欢剪纸小组的学生有多少名.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某社区居民掌握民法知识的情况,对社区内的甲、乙两个小区各500名居民进行了测试,从中各随机抽取50名居民的成绩(百分制)进行整理、描述、分析,得到部分信息:
a.甲小区50名居民成绩的频数直方图如下(数据分成5组:50≤x<60,60≤x<70,70≤x<80,80≤x<90,90≤x≤100);
b.图中,70≤x<80组的前5名的成绩是:79 79 79 78 77
c.图中,80≤x<90组的成绩如下:
82 | 83 | 84 | 85 | 85 | 86 | 86 | 86 | 86 | 86 |
86 | 86 | 86 | 87 | 87 | 87 | 88 | 88 | 89 | 89 |
d.两组样本数据的平均数、中位数、众数、优秀率(85分及以上)、满分人数如下表所示:
小区 | 平均数 | 中位数 | 众数 | 优秀率 | 满分人数 |
甲 | 78.58 | 84.5 | a | b | 1 |
乙 | 76.92 | 79.5 | 90 | 40% | 4 |
根据以上信息,回答下列问题:
(1)求表中a,b的值;
(2)请估计甲小区500名居民成绩能超过平均数的人数;
(3)请尽量从多个角度,分析甲、乙两个小区参加测试的居民掌握民法知识的情况.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知点是一次函数
图像上一点,过点
作
轴的垂线
是
上一点(
在
上方),在
的右侧以
为斜边作等腰直角三角形
,反比例函数
的图像过点
,若
的面积为6,则
的面积是 ( )
A.B.4C.3D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与x轴交于A,与y轴交于B,抛物线
经过点A,且与y轴交于点C(0,4),P为x轴上一动点,按逆时针方向作CPE,使CPE∽AOB.
(1)求抛物线解析式.
(2)若点E落在抛物线上,求出点P的坐标.
(3)若ABE是直角三角形,直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图直角坐标系中,以M(3,0)为圆心的⊙M交x轴负半轴于A,交x轴正半轴于B,交y轴于C、D.
(1)若C点坐标为(0,4),求点A坐标.
(2)在(1)的条件下,在⊙M上,是否存在点P,使∠CPM=45°,若存在,求出满足条件的点P.
(3)过C作⊙M的切线CE,过A作AN⊥CE于F,交⊙M于N,当⊙M的半径大小发生变化时.AN的长度是否变化?若变化,求变化范围,若不变,证明并求值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,∠ACB=90°,∠BAC=60°,AC=6,AD平分∠BAC,交边BC于点D,过点D作CA的平行线,交边AB于点E.
(1)求线段DE的长;
(2)取线段AD的中点M,联结BM,交线段DE于点F,延长线段BM交边AC于点G,求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com