【题目】一个问题解决往往经历发现猜想——探索归纳——问题解决的过程,下面结合一道几何题来体验一下.
(发现猜想)(1)如图①,已知∠AOB=70°,∠AOD=100°,OC为∠BOD的角平分线,则∠AOC的度数为 ;.
![]()
(探索归纳)(2)如图①,∠AOB=m,∠AOD=n,OC为∠BOD的角平分线. 猜想∠AOC的度数(用含m、n的代数式表示),并说明理由.
(问题解决)(3)如图②,若∠AOB=20°,∠AOC=90°,∠AOD=120°.若射线OB绕点O以每秒20°逆时针旋转,射线OC绕点O以每秒10°顺时针旋转,射线OD绕点O每秒30°顺时针旋转,三条射线同时旋转,当一条射线与直线OA重合时,三条射线同时停止运动. 运动几秒时,其中一条射线是另外两条射线夹角的角平分线?
【答案】(1)85°;(2)∠AOC=
;理由见解析;(3)经过
,
,4秒时,其中一条射线是另外两条射线夹角的平分线.
【解析】
(1)根据∠AOD、∠AOB、∠BOD之间的关系,求出∠BOD的度数,然后根据角平分线的性质算出∠BOC的度数,再计算∠AOC即可解决问题.
(2)根据∠AOD、∠AOB、∠BOD之间的关系,用m、n表示出∠BOD的度数,然后根据角平分线的性质用m、n的代数式表示出∠BOC,最后再表示出∠AOC即可解决问题.
(3)根据各角之间存在的数量关系,设经过x秒时,分别用x将∠DOA、∠COA、∠BOA表示出来,然后分四类情况讨论,根据角平分线的性质列出方程,解决即可.
(1)85°;
(2)∵∠AOB=m,∠AOD=n
∴∠BOD=n-m
∵OC为∠BOD的角平分线
∴∠BOC=![]()
∴∠AOC=
+m=
(3)设经过的时间为x秒,
则∠DOA=120°-30x;∠COA=90°-10x;∠BOA=20°+20x;
①当在x=
之前,OC为OB,OD的角平分线;30-20x=70-30x,x1=4(舍);
②当x在
和2之间,OD为OC,OB的角平分线;-30+20x=100-50x,x2=
;
③当x在2和
之间,OB为OC,OD的角平分线;70-30x=-100+50x,x3=
;
④当x在
和4之间,OC为OB,OD的角平分线;-70+30x=-30+20x,x4=4.
答:经过
,
,4秒时,其中一条射线是另外两条射线夹角的平分线.