【题目】如图,已知在RtABC中,∠C=90°,∠A=30°,在直线AC上找点P,使△ABP是等腰三角形,则∠APB的度数为_______________
![]()
参考答案:
【答案】15°,30°,75°,120°
【解析】试题分析:∵在Rt△ABC中,∠C=90°,∠A=30°,
∴当AB=BP1时,∠BAP1=∠BP1A=30°,
当AB=AP3时,∠ABP3=∠AP3B=
∠BAC=
×30°=15°,
当AB=AP2时,∠ABP2=∠AP2B=
×(180°﹣30°)=75°,
当AP4=BP4时,∠BAP4=∠ABP4,
∴∠AP4B=180°﹣30°×2=120°,
∴∠APB的度数为:15°、30°、75°、120°.
![]()
考点: 等腰三角形的判定
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=ax2+bx+c经过△ABC的三个顶点,与y轴相交于(0,
),点A坐标为(﹣1,2),点B是点A关于y轴的对称点,点C在x轴的正半轴上.(1)求该抛物线的函数关系表达式.
(2)点F为线段AC上一动点,过F作FE⊥x轴,FG⊥y轴,垂足分别为E、G,当四边形OEFG为正方形时,求出F点的坐标.
(3)将(2)中的正方形OEFG沿OC向右平移,记平移中的正方形OEFG为正方形DEFG,当点E和点C重合时停止运动,设平移的距离为t,正方形的边EF与AC交于点M,DG所在的直线与AC交于点N,连接DM,是否存在这样的t,使△DMN是等腰三角形?若存在,求t的值;若不存在请说明理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】(7分)如图,已知AE⊥BC,AD平分∠BAE,∠ADB=110°,∠CAE=20°.求∠B的度数.

-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=2x2 - 4x+c经过点(2, -3),则c的值为( )
A.-1B.2C.-3D.-2
-
科目: 来源: 题型:
查看答案和解析>>【题目】九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).
时间x(天)
1
30
60
90
每天销售量p(件)
198
140
80
20
(1)求出w与x的函数关系式;
(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;
(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.

-
科目: 来源: 题型:
查看答案和解析>>【题目】在如图的方格中,每个小正方形的边长都为1,△ABC的顶点均在格点上.在建立平面直角坐标系后,点B的坐标为(﹣1,2).
(1)把△ABC向下平移8个单位后得到对应的△A1B1C1,画出△A1B1C1;
(2)画出与△A1B1C1关于y轴对称的△A2B2C2;
(3)若点P(a,b)是△ABC边上任意一点,P2是△A2B2C2边上与P对应的点,写出P2的坐标为 ;
(4)试在y轴上找一点Q(在图中标出来),使得点Q到B2、C2两点的距离之和最小,并求出QB2+QC2的最小值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=(x﹣1)2+2的对称轴是( )
A.直线x=2
B.直线x=﹣2
C.直线x=1
D.直线x=﹣1
相关试题