【题目】关于x的方程为x2+(m+2)x+2m﹣1=0.
(1)证明:方程有两个不相等的实数根;
(2)是否存在实数m,使方程的两个实数根互为相反数?若存在,求出m的值;若不存在,请说明理由.
参考答案:
【答案】(1)方程有两个不相等的实数根;(2)存在, m=﹣2时,方程的两根互为相反数
【解析】试题分析:(1)运用一元二次方程根的判别式,当△>0,一元二次方程有两个不相等的实数根,要证明方程有两个不相等的实数根,即只要证出△>0即可.(2)要使方程的两个实数根互为相反数,利用根与系数的关系,得出x1+x2=
=0,代入求出m的值即可.
试题解析:
(1)∵关于x的方程为x2+(m+2)x+2m﹣1=0.
∴△=(m+2)2﹣4(2m﹣1)=m2+4m+4﹣8m+4=m2﹣4m+4+4=(m﹣2)2+4>0,
∴方程有两个不相等的实数根;
(2)存在,设方程的两根为x1,x2,
∵关于x的方程为x2+(m+2)x+2m﹣1=0.
∴根据根与系数的关系得,x1+x2=﹣(m+2),
∵方程的两个实数根互为相反数,
∴x1+x2=0,
即:﹣(m+2)=0,
∴m=﹣2.
即:m=﹣2时,方程的两根互为相反数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在△ABC中,∠BAC=90°,AB=AC,点D为直线BC上一动点(点D不与B、C重合),以AD为边在AD的右侧作正方形ADEF,连接CF.
(1)观察猜想:如图(1),当点D在线段BC上时,
①BC与CF的位置关系是: ;
②BC、CD、CF之间的数量关系为: (将结论直接写在横线上)
(2)数学思考:如图(2),当点D在线段CB的延长线上时,上述①、②中的结论是否仍然成立?若成立,请给予证明,若不成立,请你写出正确结论再给予证明.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点B、E分别在AC、DF上,AF分别交BD、CE于点M、N,∠A=∠F,∠1=∠2.
(1)求证:四边形BCED是平行四边形;
(2)已知DE=2,连接BN,若BN平分∠DBC,求CN的长.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知正比例函数y=kx经过点A,点A在第四象限,过点A作AH⊥x轴,垂足为点H,点A的横坐标为3,且△AOH的面积为3.
(1)求正比例函数的解析式;
(2)在x轴上能否找到一点P,使△AOP的面积为5?若存在,求点P的坐标;若不存在,请说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知数轴上
两点相距
个单位长度,机器人从
点出发去
点,
点在
点右侧.规定向右为前进,第一次它前进
个单位长度,第二次它后退
个单位长度,第三次再前进
个单位长度,第四次又后退
个单位长度……按此规律行进,如果
点在数轴上表示的数为
,那么
(1)求出
点在数轴上表示的数.(2)经过第七次行进后机器人到达点
,第八次行进后到达点
,点
到
点的距离相等吗?请说明理由.(3)机器人在未到达
点之前,经过
次(
为正整数)行进后,它在数轴上表示的数应如何用含
的代数式表示?(4)如果
点在原点的右侧,那么机器人经过
次行进后,它在
点的什么位置?请通过计算说明. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC、△DEP是两个全等的等腰直角三角形,∠BAC=∠PDE=90°.
(1)若将△DEP的顶点P放在BC上(如图1),PD、PE分别与AC、AB相交于点F、G.求证:△PBG∽△FCP;
(2)若使△DEP的顶点P与顶点A重合(如图2),PD、PE与BC相交于点F、G.试问△PBG与△FCP还相似吗?为什么?

-
科目: 来源: 题型:
查看答案和解析>>【题目】随着通讯技术迅猛发展,人与人之间的沟通方式更多样、便捷.某校数学兴趣小组设计了“你最喜欢的沟通方式”调查问卷(每人必选且只选一种),在全校范围内随机调查了部分学生,将统计结果绘制了如下两幅不完整的统计图,请结合图中所给的信息解答下列问题:

(1)这次统计共抽查了 名学生;在扇形统计图中,表示“QQ”的扇形圆心角的度数为 ;
(2)将条形统计图补充完整;
(3)该校共有1500名学生,请估计该校最喜欢用“微信”进行沟通的学生有多少名?
(4)某天甲、乙两名同学都想从“微信”、“QQ”、“电话”三种沟通方式中选一种方式与对方联系,请用列表或画树状图的方法求出甲、乙两名同学恰好选中同一种沟通方式的概率.
相关试题