【题目】如图,在矩形ABCD中,BC=6cm,CD=3cm,将△BCD沿BD翻折,点C落在点C′处,BC′交AD于点E,则AE的长为______ cm.
![]()
参考答案:
【答案】
【解析】根据翻折的性质可得∠BCD=∠EBD,再根据两直线平行,内错角相等可得∠BCD=∠ADB,从而得到∠EBD=∠ADB,然后根据等角对等边可得BE=DE,再根据矩形的对边相等可得AB=CD,AD=BC,设AE=x,表示出BE,然后在Rt△ABE中,利用勾股定理列出方程求解即可.
解:∵△BCD沿BD翻折,点C落在点C′处,
∴∠BCD=∠EBD,
∵矩形的对边AD∥BC,
∴∠BCD=∠ADB,
∴∠EBD=∠ADB,
∴BE=DE,
在矩形ABCD中,AB=CD=3cm,AD=BC=6cm,
设AE=xcm,则BE=DE=AD﹣AE=6﹣x,
在Rt△ABE中,由勾股定理得,AB2+AE2=BE2,
即32+x2=(6﹣x)2,
解得x=
,
即AE=
cm.
故答案为:
.
“点睛”本题考查了翻折变换的性质,矩形的性质,平行四边形的性质,等角对等边的性质,难点在于将所求的边以及已知的边的长度转化到同一个直角三角形中利用勾股定理列出方程.
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知四边形ABCD中,AB与CD不平行,AC与BD相交于点O,那么下列条件中能判定四边形ABCD是等腰梯形的是( )
A. AC=BD=BC B. AB=AD=CD C. OB=OC,AB=CD D. OB=OC,OA=OD
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市出租车计费办法如图所示.根据图象信息,下列说法错误的是( )

A. 出租车起步价是10元
B. 在3千米内只收起步价
C. 超过3千米部分(x>3)每千米收3元
D. 超过3千米时(x>3)所需费用y与x之间的函数关系式是y=2x+4
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知3是关于x的方程x2-(m+1)x+2m=0的一个实数根,并且这个方程的两个实数根恰好是等腰△ABC的两条边的边长,则△ABC的周长为( )
A. 7 B. 10 C. 11 D. 10或11
-
科目: 来源: 题型:
查看答案和解析>>【题目】等腰三角形中,一个角为50°,则这个等腰三角形的顶角的度数为( )
A.150°
B.80°
C.50°或80°
D.70° -
科目: 来源: 题型:
查看答案和解析>>【题目】“绿色出行,低碳健身”已成为广大市民的共识.某旅游景点新增了一个公共自行车停车场,6:00至18:00市民可在此借用自行车,也可将在各停车场借用的自行车还于此地.林华同学统计了周六该停车场各时段的借、还自行车数,以及停车场整点时刻的自行车总数(称为存量)情况,表格中x=1时的y值表示7:00时的存量,x=2时的y值表示8:00时的存量…依此类推.他发现存量y(辆)与x(x为整数)满足如图所示的一个二次函数关系.
时段
x
还车数
(辆)
借车数
(辆)
存量y
(辆)
6:00﹣7:00
1
45
5
100
7:00﹣8:00
2
43
11
n
…
…
…
…
…
根据所给图表信息,解决下列问题:

(1)m= ,解释m的实际意义: ;
(2)求整点时刻的自行车存量y与x之间满足的二次函数关系式;
(3)已知9:00~10:O0这个时段的还车数比借车数的3倍少4,求此时段的借车数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列语句中,不是命题的是( )
A. 相等的角是对顶角B. 两条直线不平行
C. 延长AB到C使BC=ABD. 两点之间线段最短
相关试题