【题目】如图,在△ABC中,以BC为直径的圆交AC于点D,∠ABD=∠ACB.![]()
(1)求证:AB是圆的切线;
(2)若点E是BC上一点,已知BE=4,tan∠AEB=
,AB:BC=2:3,求圆的直径.
参考答案:
【答案】
(1)
证明:∵BC是直径,
∴∠BDC=90°,
∴∠ACB+∠DBC=90°,
∵∠ABD=∠ACB,
∴∠ABD+∠DBC=90°
∴∠ABC=90°
∴AB⊥BC,
∴AB是圆的切线.
(2)
解:在RT△AEB中,tan∠AEB=
,
∴
=
,即AB=
BE=
,
在RT△ABC中,
=
,
∴BC=
AB=10,
∴圆的直径为10.
【解析】本题考查切线的判定、三角函数等知识,解题的关键是记住经过半径的外端垂直于半径的直线是圆的切线,属于中考常考题型.(1)欲证明AB是圆的切线,只要证明∠ABC=90°即可.(2)在RT△AEB中,根据tan∠AEB=
,求出BC,在在RT△ABC中,根据
=
求出AB即可.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在求1+3+32+33+34+35+36+37+38的值时,张红发现:从第二个加数起每一个加数都是前一个加数的3倍,于是她假设:S=1+3+32+33+34+35+36+37+38①,
然后在①式的两边都乘以3,得:3S=3+32+33+34+35+36+37+38+39②,
②﹣①得,3S﹣S=39﹣1,即2S=39﹣1,
随意S=
.
得出答案后,爱动脑筋的张红想:如果把“3”换成字母m(m≠0且m≠1),能否求出1+m+m2+m3+m4+…+m2016的值?如能求出,其正确答案是 . -
科目: 来源: 题型:
查看答案和解析>>【题目】
(1)计算:(
)﹣1+(π﹣3.14)0﹣2sin60°﹣
+|1﹣3
|;
(2)先化简,再求值:
(a+1﹣
)÷(
),其中a=2+
. -
科目: 来源: 题型:
查看答案和解析>>【题目】“校园安全”受到全社会的广泛关注,东营市某中学对部分学生就校园安全知识的了解程度,采用随机抽样调查的方式,并根据收集到的信息进行统计,绘制了如图两幅尚不完整的统计图,请你根据统计图中所提供的信息解答下列问题:

(1)接受问卷调查的学生共有人,扇形统计图中“基本了解”部分所对应扇形的圆心角为;
(2)请补全条形统计图;
(3)若该中学共有学生900人,请根据上述调查结果,估计该中学学生中对校园安全知识达到“了解”和“基本了解”程度的总人数;
(4)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在平面直角坐标系中,直线AB与x轴交于点B,与y轴交于点A,与反比例函数y=
的图象在第二象限交于点C,CE⊥x轴,垂足为点E,tan∠ABO=
,OB=4,OE=2.
(1)求反比例函数的解析式;
(2)若点D是反比例函数图象在第四象限上的点,过点D作DF⊥y轴,垂足为点F,连接OD、BF.如果S△BAF=4S△DFO , 求点D的坐标. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,△ABC是等腰直角三角形,∠BAC=90°,AB=AC,四边形ADEF是正方形,点B、C分别在边AD、AF上,此时BD=CF,BD⊥CF成立.

(1)当△ABC绕点A逆时针旋转θ(0°<θ<90°)时,如图2,BD=CF成立吗?若成立,请证明,若不成立,请说明理由;
(2)当△ABC绕点A逆时针旋转45°时,如图3,延长BD交CF于点H.
①求证:BD⊥CF;
②当AB=2,AD=3
时,求线段DH的长.
相关试题