【题目】如图,抛物线y=ax2+bx(a≠0)经过点A(2,0),点B(3,3),BC⊥x轴于点C,连接OB,等腰直角三角形DEF的斜边EF在x轴上,点E的坐标为(﹣4,0),点F与原点重合![]()
(1)求抛物线的解析式并直接写出它的对称轴;
(2)△DEF以每秒1个单位长度的速度沿x轴正方向移动,运动时间为t秒,当点D落在BC边上时停止运动,设△DEF与△OBC的重叠部分的面积为S,求出S关于t的函数关系式;
(3)点P是抛物线对称轴上一点,当△ABP是直角三角形时,请直接写出所有符合条件的点P坐标.
参考答案:
【答案】
(1)
解:根据题意得
,
解得a=1,b=﹣2,
∴抛物线解析式是y=x2﹣2x,
对称轴是直线x=1;
(2)
解:有3中情况:
①当0≤t≤3时,△DEF与△OBC重叠部分为等腰直角三角形,如图1:
![]()
S=
;
②当3<t≤4时,△DEF与△OBC重叠部分是四边形,如图2:
![]()
S=
;
③当4<t≤5时,△DEF与△OBC重叠部分是四边形,如图3:
![]()
S=
;
(3)
解:当△ABP是直角三角形时,可得符合条件的点P坐标为(1,1)或(1,2)或(1,
)或(1,
).
【解析】(1)根据待定系数法解出解析式和对称轴即可;
(2)从三种情况分析①当0≤t≤3时,△DEF与△OBC重叠部分为等腰直角三角形;②当3<t≤4时,△DEF与△OBC重叠部分是四边形;③当4<t≤5时,△DEF与△OBC重叠部分是四边形得出S关于t的函数关系式即可;
(3)直接写出当△ABP是直角三角形时符合条件的点P坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点D是等边△ABC中BC边的延长线上一点,且AC=CD,以AB为直径作⊙O,分别交边AC、BC于点E、点F

(1)求证:AD是⊙O的切线;
(2)连接OC,交⊙O于点G,若AB=4,求线段CE、CG与
围成的阴影部分的面积S. -
科目: 来源: 题型:
查看答案和解析>>【题目】某种商品的进价为40元/件,以获利不低于25%的价格销售时,商品的销售单价y(元/件)与销售数量x(件)(x是正整数)之间的关系如下表:
x(件)
…
5
10
15
20
…
y(元/件)
…
75
70
65
60
…
(1)由题意知商品的最低销售单价是___元,当销售单价不低于最低销售单价时,y是x的一次函数.求出y与x的函数关系式及x的取值范围;
(2)在(1)的条件下,当销售单价为多少元时,所获销售利润最大,最大利润是多少元? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在△ABC中,AB=AC,射线BP从BA所在位置开始绕点B顺时针旋转,旋转角为α(0°<α<180°)

(1)当∠BAC=60°时,将BP旋转到图2位置,点D在射线BP上.若∠CDP=120°,则∠ACD__∠ABD(填“>”、“=”、“<”),线段BD、CD与AD之间的数量关系是_____;
(2)当∠BAC=120°时,将BP旋转到图3位置,点D在射线BP上,若∠CDP=60°,求证:BD﹣CD=
AD;
(3)将图3中的BP继续旋转,当30°<α<180°时,点D是直线BP上一点(点P不在线段BD上),若∠CDP=120°,请直接写出线段BD、CD与AD之间的数量关系(不必证明). -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,小贤为了体验四边形的不稳定性,将四根木条用钉子钉成一个矩形框架ABCD,B与D两点之间用一根橡皮筋拉直固定,然后向右扭动框架,观察所得四边形的变化,下列判断错误的是( )

A.四边形ABCD由矩形变为平行四边形
B.BD的长度增大
C.四边形ABCD的面积不变
D.四边形ABCD的周长不变 -
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=ax2+bx+c(a>0)过(﹣2,0),(2,3)两点,那么抛物线的对称轴( )
A.只能是x=﹣1
B.可能是y轴
C.可能在y轴右侧且在直线x=2的左侧
D.可能在y轴左侧且在直线x=﹣2的右侧 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1是小志同学书桌上的一个电子相框,将其侧面抽象为如图2所示的几何图形,已知BC=BD=15cm,∠CBD=40°,则点B到CD的距离为 cm(参考数据sin20°≈0.342,cos20°≈0.940,sin40°≈0.643,cos40°≈0.766,结果精确到0.1cm,可用科学计算器).

相关试题