【题目】已知四边形 ABCD ,有以下四个条件:① AB ∥ CD ;② BC ∥ AD ;③ AB CD ;④ABC ADC .从这四个条件中任选两个,能使四边形 ABCD 成为平行四边形的选法有( )
A.3 种B.4 种C.5 种D.6 种
参考答案:
【答案】B
【解析】
从四个条件中任选两个,共有以下6种组合:①②、①③、①④、②③、②④、③④,然后按照平行四边形的判定方法逐一判断即可.
解:从四个条件中任选两个,共有以下6种组合:①②、①③、①④、②③、②④、③④;
具备①②时,四边形ABCD满足两组对边分别平行,是平行四边形;
具备①③时,四边形ABCD满足一组对边平行且相等,是平行四边形;
具备①④时,如图,∵AB ∥ CD ,∴ABC +C=180°.
∵ABC ADC,∴ADC +C=180°.
∴AD∥CB .
所以四边形 ABCD 是平行四边形;
![]()
具备②③时,等腰梯形就符合一组对边平行,另一组对边相等,但它不是平行四边形,故具备②③时,不能判断是否是平行四边形;
具备②④时,类似于上述①④,可以证明四边形 ABCD 是平行四边形;
具备③④时,如图,四边形ABCD为平行四边形,连接AC,作AE垂直BC于E;
在EB上截取EC'=EC,连接AC',则△AEC'≌△AEC,AC'=AC.
把△ACD绕点A顺时针旋转∠CAC'的度数,则AC与AC'重合.
显然四边形ABC'D' 满足:AB=CD=C'D';∠B=∠D=∠D',而四边形ABC'D'并不是平行四边形.
![]()
综上,从四个条件中任选两个,能使四边形 ABCD 成为平行四边形的选法共有4种.
故选B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】把下列各数填在相应的大括号内:
﹣5,|-
|,﹣12,0,﹣3.14,+1.99,﹣(﹣6),
(1)正数集合:{ …}
(2)负数集合:{ …}
(3)整数集合:{ …}
(4)分数集合:{ …}.
-
科目: 来源: 题型:
查看答案和解析>>【题目】(1)|﹣3|﹣5×(﹣
)+(﹣4)(2)(﹣2)2﹣4÷(﹣
)+(﹣1)2016(3)
×(﹣24)(4)﹣12014﹣(1﹣0.5)÷
×[(﹣2)3﹣4] -
科目: 来源: 题型:
查看答案和解析>>【题目】(1)4(2x﹣1)﹣3(5x+1)=14
(2)5﹣
=x(3)

(4)

-
科目: 来源: 题型:
查看答案和解析>>【题目】抛物线y=﹣x2+bx+c上部分点的横坐标x,纵坐标y的对应值如下表所示:
x
…
﹣2
﹣1
0
1
2
…
y
…
0
4
6
6
4
…
从上表可知,下列说法中,错误的是( )
A. 抛物线于x轴的一个交点坐标为(﹣2,0)
B. 抛物线与y轴的交点坐标为(0,6)
C. 抛物线的对称轴是直线x=0
D. 抛物线在对称轴左侧部分是上升的
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,一段抛物线:y=﹣x(x﹣2)(0≤x≤2)记为C1,它与x轴交于两点O,A1;将C1绕A1旋转180°得到C2,交x轴于A2;将C2绕A2旋转180°得到C3,交x轴于A3;…如此进行下去,直至得到C6,若点P(11,m)在第6段抛物线C6上,则m=_____.

-
科目: 来源: 题型:
查看答案和解析>>【题目】对某一个函数给出如下定义:若存在实数M>0,对于任意的函数值y,都满足﹣M≤y≤M,则称这个函数是有界函数,在所有满足条件的M中,其最小值称为这个函数的边界值.例如,如图中的函数是有界函数,其边界值是1.

(1)分别判断函数 y=
(x>0)和y=x+1(﹣4≤x≤2)是不是有界函数?若是有界函数,求其边界值;(2)若函数y=﹣x+1(a≤x≤b,b>a)的边界值是2,且这个函数的最大值也是2,求b的取值范围;
(3)将函数 y=x2(﹣1≤x≤m,m≥0)的图象向下平移m个单位,得到的函数的边界值是t,当m在什么范围时,满足
≤t≤1?
相关试题