【题目】在一个不透明的袋子中装有仅颜色不同的10个小球,其中红球4个,黑球6个.
(1)先从袋子中取出m(m>1)个红球,再从袋子中随机摸出1个球,将“摸出黑球”记为事件A,请完成下列表格:
事件A | 必然事件 | 随机事件 |
m的值 |
(2)先从袋子中取出m个红球,再放入m个一样的黑球并摇匀,随机摸出1个黑球的概率等于
,求m的值.
参考答案:
【答案】(1)4;2,3;(2)2.
【解析】
试题分析:(1)当袋子中全部为黑球时,摸出黑球才是必然事件,否则就是随机事件;(2)利用概率公式列出方程,求得m的值即可.
试题解析:(1)当袋子中全为黑球,即摸出4个红球时,摸到黑球是必然事件;
当摸出2个或3个时,摸到黑球为随机事件;
(2)根据题意得:
,
解得:m=2,
所以m的值为2.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正比例函数y=﹣
x的图象与反比例函数y=
的图象分别交于M,N两点,已知点M(﹣2,m).(1)求反比例函数的表达式;
(2)点P为y轴上的一点,当∠MPN为直角时,直接写出点P的坐标.

-
科目: 来源: 题型:
查看答案和解析>>【题目】请阅读下列材料,并完成相应的任务:
阿基米德折弦定理
阿基米德(archimedes,公元前287﹣公元前212年,古希腊)是有史以来最伟大的数学家之一,他与牛顿、高斯并成为三大数学王子.
阿拉伯Al﹣Binmi的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al﹣Binmi译本出版了俄文版《阿基米德全集》,第一题就是阿基米德折弦定理.
阿基米德折弦定理:如图1,AB和BC是⊙O的两条弦(即折线ABC是圆的一条折弦),BC>AB,M是
的中点,则从M向BC所作垂线的垂足D是折弦ABC的中点,即CD=AB+BD.下面是运用“截长法”证明CD=AB+BD的部分证明过程.证明:如图2,在CB上截取CG=AB,连接MA,MB,MC和MG.∵M是
的中点,∴MA=MC.
…
任务:
(1)请按照上面的证明思路,写出该证明的剩余部分;
(2)填空:如图3,已知等边△ABC内接于⊙O,AB=2,D为
上一点,∠ABD=45°,AE⊥BD于点E,则△BDC的周长是 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知抛物线y=x2﹣(2m+1)x+m2+m﹣2(m是常数).
(1)求证:无论m为何值,抛物线与x轴总有两个交点;
(2)若抛物线与x轴两交点分别为A(x1,0),B(x2,0)(x1>x2),且AB=1+
,求m的值. -
科目: 来源: 题型:
查看答案和解析>>【题目】多项式x2﹣4x﹣12可以因式分解成( )
A.x(x﹣4)﹣12
B.(x﹣2)(x+6)
C.(x+2)(x﹣6)
D.(x+3)(x﹣4) -
科目: 来源: 题型:
查看答案和解析>>【题目】分解因式 -2a2+8ab-8b2=______________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,P为正方形ABCD内一点,PA=1,PB=2,PC=3.
(1)将△ABP绕点B顺时针旋转90°,得到△BEC,请你画出△BEC.
(2)连接PE,求证:△PEC是直角三角形;
(3)填空:∠APB的度数为 .

相关试题