【题目】矩形ABCD中,AD=8cm,AB=6cm,动点E从点C开始沿边CB向点B以2cm/s的速度运动,动点F从点C同时出发沿边CD向点D以1cm/s的速度运动,E点运动到B点停止,F点继续运动,运动到点D停止.如图可得到矩形CFHE,设F点运动时间为x(单位:s),此时矩形ABCD去掉矩形CFHE后剩余部分的面积为y(单位:cm2),则y与x之间的函数关系用图象表示大致是如图中的( )![]()
A.![]()
B.![]()
C.![]()
D.![]()
参考答案:
【答案】A
【解析】解:此题在读懂题意的基础上,分两种情况讨论:
当x≤4时,y=6×8﹣(x2x)=﹣2x2+48,此时函数的图象为抛物线的一部分,它的最上点抛物线的顶点(0,48),最下点为(4,16);
当4<x≤6时,点E停留在B点处,故y=48﹣8x=﹣8x+48,此时函数的图象为直线y=﹣8x+48的一部分,它的最上点可以为(4,16),它的最下点为(6,0).
结合四个选项的图象知选A项.
故选:A.
重点考查学生的阅读理解能力、分析研究能力.在解答时要注意先总结出函数的解析式,由解析式结合其取值范围判断.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠ A=500,∠C=700,BD、BE三等分∠ABC,将△BCE沿BE对折,点C落在C’处,则∠1=_________;

-
科目: 来源: 题型:
查看答案和解析>>【题目】填写理由:
已知:如图,ABC是直线,∠1=115°,∠D=65°.
求证:AB∥DE.

证明:∵ABC是一直线,(已知)
∴∠1+∠2=180°( )
∵∠1=115°(已知)
∴∠2=65°
又∵∠D=65°(已知)
∴∠2=∠D
∴ ∥ ( )
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABE和△ADC是△ABC分别沿着AB、AC边翻折180°形成的,若∠1:∠2:∠3=28:5:3,则∠α的度数为__度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在Rt△ABC中,∠ACB=90°,过点C的直线MN∥AB,D为AB边上一点,过点D作DE⊥BC,交直线MN于E,垂足为F,连接CD,BE.
(1)求证:CE=AD;
(2)当D为AB中点时,四边形BECD是什么特殊四边形?说明你的理由;
(3)若D为AB中点,则当∠A的大小满足什么条件时,四边形BECD是正方形?请说明你的理由.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点P是∠AOB的边OB上的一点,过点P画OB的垂线,交OA于点C;
(1) 过点C画OB的平行线CD;
(2) 过点P画OA的垂线,垂足为H;
(3) 线段PH的长度是点P到 的距离,线段 的长度是点C到直线OB的距离.线段PC、PH、OC这三条线段大小关系是 (用“<”号连接).

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图放置的△OAB1 , △B1A1B2 , △B2A2B3 , …都是边长为2的等边三角形,点A在y轴上,点O,B1 , B2 , B3…都在直线l上,则点B2017的坐标是 .

相关试题