【题目】已知一次函数y=kx+b的图象经过点(0,2)和点(1,﹣1).
(1)求这个一次函数的解析式;
(2)求此一次函数图象与两坐标轴所围成的三角形面积.
参考答案:
【答案】(1) y=﹣3x+2;(2)![]()
【解析】
(1)把已知两点的坐标代入y=kx+b得关于k、b的方程组,然后解方程组即可;
(2)先利用一次函数解析式求出一次函数与x轴的交点坐标,然后根据三角形面积公式求解.
解:(1)把(0,2)和(1,﹣1)代入y=kx+b得
,
解得
,
所以一次函数解析式为y=﹣3x+2;
(2)当y=0时,﹣3x+2=0,解得x=
,则一次函数与x轴的交点坐标为(
,0),
所以一次函数图象与两坐标轴所围成的三角形面积=
×2×
=
.
故答案为:(1) y=﹣3x+2;(2)![]()
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,抛物线y=-x 2+bx+c与x轴交于A、B两点,与y轴交于点C,已知经过B、C两点的直线的表达式为y=-x+3.
(1)求抛物线的函数表达式;
(2)点P(m,0)是线段OB上的一个动点,过点P作y轴的平行线,交直线BC于D,交抛物线于E,EF∥x轴,交直线BC于F,DG∥x轴,FG∥y轴,DG与FG交于点G.设四边形DEFG的面积为S,当m为何值时S最大,最大值是多少?
(3)在坐标平面内是否存在点Q,将△OAC绕点Q逆时针旋转90°,使得旋转后的三角形恰好有两个顶点落在抛物线上.若存在,求出所有符合条件的点Q的坐标;若不存在,请说明理由.


-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC在直角坐标系中,

(1)请写出△ABC各点的坐标.
(2)求出△ABC的面积.
(3)若把△ABC向上平移2个单位,再向右平移2个单位得到△A′B′C′,请在图中画出△A′B′C′,并写出点A′、B′、C′的坐标.
-
科目: 来源: 题型:
查看答案和解析>>【题目】请在横线上填上合适的内容,完成下面的证明:
如图,射线AH交折线ACGFEN于点B、D、E.已知∠A=∠1,∠C=∠F,BM平分∠CBD,EN平分∠FEH.求证:∠2=∠3.

证明:∵∠A=∠1(已知)
∴AC∥GF( )
∴( )( )
∵∠C=∠F(已知)
∴∠F=∠G
∴( )( )
∴( )( )
∵BM平分∠CBD,EN平分∠FEH
∴∠2= ∠3=
∴∠2=∠3
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图为二次函数y=ax2+bx+c(a≠0)的图象,则下列说法:①a>0 ②2a+b=0 ③a+b+c>0 ④当﹣1<x<3时,y>0,其中正确的个数为( )

A. 1 B. 2 C. 3 D. 4
-
科目: 来源: 题型:
查看答案和解析>>【题目】某学校对学生的暑假参加志愿服务时间进行抽样调查,将收集的数据分成A、B、C、D、E五组进行整理,并绘制成如下的统计图表(图中信息不完整).

请结合以上信息解答下列问题
(1)求a、m、n的值.
(2)补全“人数分组统计图①中C组的人数和图②A组和B组的比例值”.
(3)若全校学生人数为800人,请估计全校参加志愿服务时间在30≤x<40的范围的学生人数.
分组统计表
组别
志愿服务时间
x(时)
人数
A
0≤x<10
a
B
10≤x<20
40
C
20≤x<30
m
D
30≤x<40
n
E
x≥40
16
-
科目: 来源: 题型:
查看答案和解析>>【题目】某县政府打算用25000元用于为某乡福利院购买每台价格为2000元的彩电和每台价格为1800元的冰箱,并计划恰好全部用完此款.
(1)问原计划所购买的彩电和冰箱各多少台?
(2)由于国家出台“家电下乡”惠农政策,该县政府购买的彩电和冰箱可获得13%的财政补贴,若在不增加县政府实际负担的情况下,能否多购买两台冰箱?谈谈你的想法.
相关试题