【题目】如图,半圆O直径DE=12,Rt△ABC中,BC=12,∠ACB=90°,∠ABC=30°.半圆O从左到右运动,在运动过程中,点D,E始终在直线BC上,半圆O在△ABC的左侧.
![]()
(1)当△ABC的一边与半圆O相切时,请画出符合题意得图形.
(2)当△ABC的一边与半圆O相切时,如果半圆O与直径DE围成的区域与△ABC的三边围成的区域有重叠部分,求重叠部分的面积.
参考答案:
【答案】(1)见解析;(2)9π或9
+6π.
【解析】
试题分析:(1)因为点D,E始终在直线BC,所以当△ABC的一边与半圆O相切时只有三种情况,再分别画出即可;
(2)本题要分当△ABC的一边所在的直线与半圆O所在的圆相切时,半圆O与直径DE围成的区域与△ABC三边围成的区域有重叠部分的只有图2与图3所示的两种情形分别计算即可.
解:(1)如图所示:
![]()
(2)当△ABC的一边所在的直线与半圆O所在的圆相切时,半圆O与直径DE围成的区域与△ABC三边围成的区域有重叠部分的只有图2与图3所示的两种情形.
①如图2,设OA与半圆O的交点为M,易知重叠部分是圆心角为90°,半径为6cm的扇形,所求重叠部分面积为:S扇形EOM=
π×62=9π(cm2)
②如图3,设AB与半圆O的交点为P,连接OP,过点O作OH⊥AB,垂足为H.
则PH=BH.在Rt△OBH中,∠OBH=30°,OB=6cm
则OH=3cm,BH=3
cm,BP=6
cm,S△POB=
×6
×3=9
(cm2)
又因为∠DOP=2∠DBP=60°
所以S扇形DOP=6π(cm2)
所求重叠部分面积为:S△POB+S扇形DOP=9
+6π(cm2),
综上可知当半圆O与直径DE围成的区域与△ABC的三边围成的区域有重叠部分则重叠部分的面积是9π或9
+6π.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列式子是完全平方式的是( )
A. a2+2ab﹣b2 B. a2+ab+b2 C. a2+2a+1 D. a2+2a﹣1
-
科目: 来源: 题型:
查看答案和解析>>【题目】小芳妈妈要给一幅长为60cm,宽为40cm的矩形十字绣的四周装裱一条宽度相同的金色边框制成一幅矩形挂图,使整幅挂图面积是3400cm2.设金色边框的宽度为x cm,则x满足的方程是( )
A.x2+50x﹣1400=0
B.x2﹣65x﹣250=0
C.x2﹣30x﹣1400=0
D.x2+50x﹣250=0
-
科目: 来源: 题型:
查看答案和解析>>【题目】将方程x2﹣6x﹣5=0化为(x+m)2=n的形式,则m,n的值分别是( )
A.3和5 B.﹣3和5 C.﹣3和14 D.3和14
-
科目: 来源: 题型:
查看答案和解析>>【题目】在下列四个图案中,既是轴对称图形,又是中心对称图形是( )
A.
B.
C.
D. 
-
科目: 来源: 题型:
查看答案和解析>>【题目】若3x=4,3y=7,则3x+y的值为________
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在单位长度为1的正方形网格中,一段圆弧经过网格的交点A、B、C.

(1)请完成如下操作:①以点O为原点、竖直和水平方向为轴、网格边长为单位长,建立平面直角坐标系;②根据图形提供的信息,标出该圆弧所在圆的圆心D,并连接AD、CD.
(2)请在(1)的基础上,完成下列填空:
①写出点的坐标:C 、D ;
②⊙D的半径= (结果保留根号);
③∠ADC的度数为 .
④网格图中是否存在过点B的直线BE是⊙D的切线?如果没有,请说明理由;如果有,请直接写出直线BE的函数解析式.
相关试题