【题目】已知:如图,A是⊙O上一点,半径OC的延长线与过点A的直线交于B点,OC=BC,AC=
OB. ![]()
(1)求证:AB是⊙O的切线;
(2)若∠ACD=45°,OC=2,求弦CD的长.
参考答案:
【答案】
(1)证明:如图,连接OA;
![]()
∵OC=BC,AC=
OB,
∴OC=BC=AC=OA.
∴△ACO是等边三角形.
∴∠O=∠OCA=60°,
∵AC=BC,
∴∠CAB=∠B,
又∠OCA为△ACB的外角,
∴∠OCA=∠CAB+∠B=2∠B,
∴∠B=30°,又∠OAC=60°,
∴∠OAB=90°,
∴AB是⊙O的切线
(2)解:作AE⊥CD于点E,
![]()
∵∠O=60°,
∴∠D=30°.
∵∠ACD=45°,AC=OC=2,
∴在Rt△ACE中,CE=AE=
;
∵∠D=30°,
∴AD=2
,
∴DE=
AE=
,
∴CD=DE+CE=
+
.
【解析】(1)求证:AB是⊙O的切线,可以转化为证∠OAB=90°的问题来解决.本题应先说明△ACO是等边三角形,则∠O=60°;又AC=
OB,进而可以得到OA=AC=
OB,则可知∠B=30°,即可求出∠OAB=90°.(2)作AE⊥CD于点E,CD=DE+CE,因而就可以转化为求DE,CE的问题,根据勾股定理就可以得到.
-
科目: 来源: 题型:
查看答案和解析>>【题目】将函数y=2x+b(b为常数)的图象位于x轴下方的部分沿x轴翻折至其上方后,所得的折线是函数y=|2x+b|(b为常数)的图象.若该图象在直线y=2下方的点的横坐标x满足0<x<3,则b的取值范围为 .
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,正△ABC的边长为2,以BC边上的高AB1为边作正△AB1C1 , △ABC与△AB1C1公共部分的面积记为S1;再以正△AB1C1边B1C1上的高AB2为边作正△AB2C2 , △AB1C1与△AB2C2公共部分的面积记为S2;…,以此类推,那么S3= , 则Sn= . (用含n的式子表示)

-
科目: 来源: 题型:
查看答案和解析>>【题目】计算:
+(
)﹣2+|
﹣1|﹣2sin60°. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,一枚质地均匀的正四面体骰子,它有四个面并分别标有数字1,2,3,4. 如图2,正方形ABCD顶点处各有一个圈.跳圈游戏的规则为:游戏者每掷一次骰子,骰子着地一面上的数字是几,就沿正方形的边顺时针方向连续跳几个边长.
如:若从圈A起跳,第一次掷得3,就顺时针连续跳3个边长,落到圈D;若第二次掷得2,就从D开始顺时针连续跳2个边长,落到圈B;…
设游戏者从圈A起跳.
(1)嘉嘉随机掷一次骰子,求落回到圈A的概率P1;
(2)淇淇随机掷两次骰子,用列表法求最后落回到圈A的概率P2 , 并指出她与嘉嘉落回到圈A的可能性一样吗? -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,某超市从底楼到二楼有一自动扶梯,图2是侧面示意图.已知自动扶梯AB的坡度为1:2.4,AB的长度是13米,MN是二楼楼顶,MN∥PQ,C是MN上处在自动扶梯顶端B点正上方的一点,BC⊥MN,在自动扶梯底端A处测得C点的仰角为42°,求二楼的层高BC(精确到0.1米).
(参考数据:sin42°≈0.67,cos42°≈0.74,tan42°≈0.90)
-
科目: 来源: 题型:
查看答案和解析>>【题目】九年级(3)班数学兴趣小组经过市场调查整理出某种商品在第x天(1≤x≤90,且x为整数)的售价与销售量的相关信息如下.已知商品的进价为30元/件,设该商品的售价为y(单位:元/件),每天的销售量为p(单位:件),每天的销售利润为w(单位:元).
时间x(天)
1
30
60
90
每天销售量p(件)
198
140
80
20

(1)求出w与x的函数关系式;
(2)问销售该商品第几天时,当天的销售利润最大?并求出最大利润;
(3)该商品在销售过程中,共有多少天每天的销售利润不低于5600元?请直接写出结果.
相关试题