【题目】已知OA⊥OB,OC⊥OD.
(1)如图①,若∠BOC=50°,求∠AOD的度数.
(2)如图②,若∠BOC=60°,求∠AOD的度数.
(3)根据(1)(2)结果猜想∠AOD与∠BOC有怎样的关系?并根据图①说明理由.
(4)如图②,若∠BOC∶∠AOD=7∶29,求∠COB和∠AOD的度数.
![]()
参考答案:
【答案】(1)130°;(2)120°;(3)互补;(4)∠COB=35°,∠AOD=145°.
【解析】试题分析:(1)根据垂线的定义,可得∠AOB与∠COD的度数,根据余角的定义,可得∠AOC,根据角的和差,可得答案;
(2)根据角的和差,可得答案;
(3)根据角的和差,可得答案;
(4)根据按比例分配,可得答案.
试题解析: (1)由OA⊥OB,OC⊥OD,
得∠AOB=∠COD=90°,
由余角的定义,得∠AOC=∠AOB∠BOC=90°50°=40°,
由角的和差,得∠AOD=∠AOC+∠COD=40°+90°=130°;
(2)由OA⊥OB,OC⊥OD,得∠AOB=∠COD=90°,
由角的和差,得∠AOD=360°∠AOB∠BOC∠COD=360°90°60°90°=120°,
(3)∠AOD+∠BOC=180,
∠AOD+∠BOC=130°+50°=180°;
(4)由角的和差,得∠AOD+∠BOC=360°∠AOB∠COD=180°,
按比例分配,得∠BOC=180°×
=35°
∠AOD=180°×
=145°.
-
科目: 来源: 题型:
查看答案和解析>>【题目】小华要画一个有两边长分别为7cm和8cm的等腰三角形,则这个等腰三角形的周长是( )
A. 16cm B. 17cm C. 22cm或23cm D. 11cm
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,已知AD∥CB,∠1=∠2,∠BAE=∠DCF。试说明:(1)AE∥CF;(2)AB∥CD。

-
科目: 来源: 题型:
查看答案和解析>>【题目】(7分)如图所示,O是直线AB上一点,∠AOC=
∠BOC,OC是∠AOD的平分线.
(1)求∠COD的度数.
(2)判断OD与AB的位置关系,并说出理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】观察图形,回答下列各题:
(1)图A中,共有____对对顶角;
(2)图B中,共有____对对顶角;
(3)图C中,共有____对对顶角;
(4)探究(1)--(3)各题中直线条数与对顶角对数之间的关系,若有n条直线相交于一点,则可形成________对对顶角;

-
科目: 来源: 题型:
查看答案和解析>>【题目】因式分解:a2b﹣4ab+4b= .
-
科目: 来源: 题型:
查看答案和解析>>【题目】若关于x的方程x2+2x+a=0有两个相等的实数根,则a的取值范围是___.
相关试题