【题目】已知:抛物线
与
轴分别交于点A(-3,0),B(m,0).将y1向右平移4个单位得到y2 .
(1)求b的值;
(2)求抛物线y2的表达式;
(3)抛物线y2与
轴交于点D,与
轴交于点E、F(点E在点F的左侧),记抛物线在D、F之间的部分为图象G(包含D、F两点),若直线
与图象G有一个公共点,请结合函数图象,求直线
与抛物线y2的对称轴交点的纵坐标t的值或取值范围.![]()
参考答案:
【答案】
(1)解:把A(-3,0)代入y1=x2+bx+3得:9-3b+3=0,
解得:b=4,
∴y1的表达式为:y=x2+4x+3
(2)解:将y1变形得:y1=(x+2)2-1
据题意y2=(x+2-4)2-1=(x-2)2-1=x2-4x+3;
∴抛物线y2的表达式为y=x2-4x+3
(3)解:∵y2=(x-2)2-1,函数图像如图所示:
![]()
∴对称轴是x=2,顶点为(2,-1);
当y2=0时,x=1或x=3,
∴E(1,0),F(3,0),D(0,3),
∵直线y=kx+k-1过定点(-1,-1),
当直线y=kx+k-1与图象G有一个公共点时,t=-1,
当直线y=kx+k-1过F(3,0)时,3k+k-1=0,
解得:k=
,
∴直线解析式为y=
x-
,
把x=2代入=
x-
,得:y=-
,
当直线过D(0,3)时,k-1=3,
解得:k=4,
∴直线解析式为y=4x+3,
把x=2代入y=4x+3得:y=11,即t=11,
∴结合图象可知t=-1,或
<t≤11.
【解析】(1)把点A的坐标代入可求出b的值,即可得到函数解析式;
(2)先把y1的解析式化成顶点式,再根据平移规律可求出;
(3)画出函数y2的图象,可求出此函数与x轴、y轴的交点坐标;直线y=kx+k-1过定点(-1,-1),再根据直线y=kx+k-1与图象G有一个公共点可求出t=-1;再由直线y=kx+k-1过F(3,0)和过D(0,3),分别求出此直线的解析式,从而得出t的值,再结合图像进而可得出答案.
【考点精析】掌握二次函数图象的平移和抛物线与坐标轴的交点是解答本题的根本,需要知道平移步骤:(1)配方 y=a(x-h)2+k,确定顶点(h,k)(2)对x轴左加右减;对y轴上加下减;一元二次方程的解是其对应的二次函数的图像与x轴的交点坐标.因此一元二次方程中的b2-4ac,在二次函数中表示图像与x轴是否有交点.当b2-4ac>0时,图像与x轴有两个交点;当b2-4ac=0时,图像与x轴有一个交点;当b2-4ac<0时,图像与x轴没有交点.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在美化校园的活动中,某兴趣小组想借助如图所示的直角墙角(两边足够长),用28m长的篱笆围成一个矩形花园ABCD(篱笆只围AB,BC两边),设AB=xm.

(1)若花园的面积为192m2 , 求x的值;
(2)若在P处有一棵树与墙CD,AD的距离分别是15m和6m,要将这棵树围在花园内(含边界,不考虑树的粗细),求x取何值时,花园面积S最大,并求出花园面积S的最大值. -
科目: 来源: 题型:
查看答案和解析>>【题目】请从下列
、
两题中任选一题作答,我选择: 题.
:如图,已知
,射线
在
外部,且
.若射线
平分
.求
的度数. 
:如图,已知
,射线
在
的内部,射线
在
的内部,且
,若射线
平分
,射线
平分
.求
的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】在“解直角三角形”一章我们学习到“锐角的正弦、余弦、正切都是锐角的函数,统称为锐角三角函数” .
小力根据学习函数的经验,对锐角的正弦函数进行了探究. 下面是小力的探究过程,请补充完成:
(1)函数的定义是:“一般地,在一个变化的过程中,有两个变量x和y,对于变量x的每一个值,变量y都有唯一确定的值和它对应,我们就把x称为自变量,y称为因变量,y是x的函数”.由函数定义可知,锐角的正弦函数的自变量是 , 因变量是 , 自变量的取值范围是 .
(2)利用描点法画函数的图象. 小力先上网查到了整锐角的正弦值,如下:
sin1°=0.01745240643728351 sin2°=0.03489949670250097 sin3°=0.05233595624294383
sin4°=0.0697564737441253 sin5°=0.08715574274765816 sin6°=0.10452846326765346
sin7°=0.12186934340514747 sin8°=0.13917310096006544 sin9°=0.15643446504023087
sin10°=0.17364817766693033 sin11°=0.1908089953765448 sin12°=0.20791169081775931
sin13°=0.22495105434386497 sin14°=0.24192189559966773 sin15°=0.25881904510252074
sin16°=0.27563735581699916 sin17°=0.2923717047227367 sin18°=0.3090169943749474
sin19°=0.3255681544571567 sin20°=0.3420201433256687 sin21°=0.35836794954530027
sin22°=0.374606593415912 sin23°=0.3907311284892737 sin24°=0.40673664307580015
sin25°=0.42261826174069944 sin26°=0.4383711467890774 sin27°=0.45399049973954675
sin28°=0.4694715627858908 sin29°=0.48480962024633706 sin30°=0.5000000000000000
sin31°=0.5150380749100542 sin32°=0.5299192642332049 sin33°=0.544639035015027
sin34°=0.5591929034707468 sin35°=0.573576436351046 sin36°=0.5877852522924731
sin37°=0.6018150231520483 sin38°=0.6156614753256583 sin39°=0.6293203910498375
sin40°=0.6427876096865392 sin41°=0.6560590289905073 sin42°=0.6691306063588582
sin43°=0.6819983600624985 sin44°=0.6946583704589972 sin45°=0.7071067811865475
sin46°=0.7193398003386511 sin47°=0.7313537016191705 sin48°=0.7431448254773941
sin49°=0.7547095802227719 sin50°=0.766044443118978 sin51°=0.7771459614569708
sin52°=0.7880107536067219 sin53°=0.7986355100472928 sin54°=0.8090169943749474
sin55°=0.8191520442889918 sin56°=0.8290375725550417 sin57°=0.8386705679454239
sin58°=0.848048096156426 sin59°=0.8571673007021122 sin60°=0.8660254037844386
sin61°=0.8746197071393957 sin62°=0.8829475928589269 sin63°=0.8910065241883678
sin64°=0.898794046299167 sin65°=0.9063077870366499 sin66°=0.9135454576426009
sin67°=0.9205048534524404 sin68°=0.9271838545667873 sin69°=0.9335804264972017
sin70°=0.9396926207859083 sin71°=0.9455185755993167 sin72°=0.9510565162951535
sin73°=0.9563047559630354 sin74°=0.9612616959383189 sin75°=0.9659258262890683
sin76°=0.9702957262759965 sin77°=0.9743700647852352 sin78°=0.9781476007338057
sin79°=0.981627183447664 sin80°=0.984807753012208 sin81°=0.9876883405951378
sin82°=0.9902680687415704 sin83°=0.992546151641322 sin84°=0.9945218953682733
sin85°=0.9961946980917455 sin86°=0.9975640502598242 sin87°=0.9986295347545738
sin88°=0.9993908270190958 sin89°=0.9998476951563913
①列表(小力选取了10对数值);x
…
…
y
…
…
②建立平面直角坐标系(两坐标轴可视数值需要分别选取不同长度做为单位长度);
③描点.在平面直角坐标系xOy 中,描出了以上表中各对对应值为坐标的点;
④连线. 根据描出的点,画出该函数的图象;
(3)结合函数的图象,写出该函数的一条性质: . -
科目: 来源: 题型:
查看答案和解析>>【题目】甲、乙两家草莓采摘园的草莓品质相同,销售价格也相同.“五一期间”,两家均推出了优惠方案,甲采摘园的优惠方案是:游客进园需购买50元的门票,采摘的草莓六折优惠;乙采摘园的优惠方案是:游客进园不需购买门票,采摘园的草莓超过一定数量后,超过部分打折优惠.优惠期间,设某游客的草莓采摘量为x(千克),在甲采摘园所需总费用为
(元),在乙采摘园所需总费用为
(元),图中折线OAB表示
与x之间的函数关系.
(1)甲、乙两采摘园优惠前的草莓销售价格是每千克 元;
(2)求
、
与x的函数表达式;(3)在图中画出
与x的函数图象,并写出选择甲采摘园所需总费用较少时,草莓采摘量x的范围. -
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°,动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动,设运动时间为t秒.


(1)当t=
秒时,则OP= , S△ABP=;
(2)当△ABP是直角三角形时,求t的值;
(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AQ·BP=3.为了证明AQ·BP=3,小华同学尝试过O点作OE∥AP交BP于点E.试利用小华同学给我们的启发补全图形并证明AQ·BP=3.
-
科目: 来源: 题型:
查看答案和解析>>【题目】综合与实践
情境再现:
举世瞩目的港珠澳大桥东接香港,西接珠海、澳门,全长
千米,是世界上最长的跨海大桥,被誉为“新世界七大奇迹”之一.如图,香港口岸点
至珠海口岸点
约
千米,海底隧道
全长约
千米,隧道一端的东人工岛点
到香港口岸的路程为
千米.某一时刻,一辆穿梭巴士从香港口岸发车,沿港珠澳大桥开往珠海口岸.
分钟后,一辆私家车也从香港口岸出发沿港珠澳大桥开往珠海口岸.在私家车出发的同时,一辆大客车从珠海口岸出发开往香港口岸.已知穿梭巴士的平均速度为
千米/时,大客车的平均速度为
千米/时,私家车的平均速度为
千米/时.
问题解决:
(1)穿梭巴士出发多长时间与大客车相遇?
(2)私家车能否在到达珠海口岸前追上穿梭巴士?说明理由;
相关试题