【题目】如图,是抛物线y=ax2+bx+c(a≠0)图象的一部分,已知抛物线的对称轴为x=2,与x轴的一个交点是(﹣1,0).下列结论: ①ac<0;
②4a﹣2b+c>0;
③抛物线与x轴的另一个交点是(4,0);
④点(﹣3,y1),(6,y2)都在抛物线上,则有y1<y2 . 其中正确的个数为( )![]()
A.1
B.2
C.3
D.4
参考答案:
【答案】B
【解析】解∵抛物线开口向上,
∴a>0,由图象知c<0,
∴ac<0,故①正确;
由抛物线的单调性知:当x=﹣2时,y>0,
即4a﹣2b+c>0,故②正确;
∵对称轴方程为 x=2,与x轴的一个交点是(﹣1,0).
∴抛物线与x轴的另一个交点是(5,0),故③错误;
∵抛物线的对称轴为x=2,点(﹣3,y1)到对称轴的距离为5,
(6,y2)到对称轴的距离为4,
∴点(6,y2)在点(﹣3,y1)的下方,
由抛物线的对称性及单调性知:y1>y2,故⑤错误;
故正确的为①②,共2个.
故选B.
根据抛物线的图象,数形结合,逐一解析判断,即可解决问题.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,由下列条件可判定哪两条直线平行,并说明根据.

(1)∠1=∠2,________________________.
(2)∠A=∠3,________________________.
(3)∠ABC+∠C=180°,________________________.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图所示,将△ABC平移到△A′B′C′的位置,连接BB′,AA′,CC′,平移的方向是点______到点________的方向,平移的距离是线段______的长度.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,点O是边AC上一个动点,过O作直线MN∥BC.设MN交∠ACB的平分线于点E,交∠ACB的外角平分线于点F.

(1)求证:OE=OF;
(2)若CE=12,CF=5,求OC的长;
(3)当点O在边AC上运动到什么位置时,四边形AECF是矩形?并说明理由.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,点N(0,6),点M在x轴负半轴上,ON=3OM,A为线段MN上一点,AB⊥x轴,垂足为点B,AC⊥y轴,垂足为点C.
(1)直接写出点M的坐标为 ;
(2)求直线MN的函数解析式;
(3)若点A的横坐标为﹣1,将直线MN平移过点C,求平移后的直线解析式.

-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,∠ A=500,∠C=700,BD、BE三等分∠ABC,将△BCE沿BE对折,点C落在C’处,则∠1=_________;

-
科目: 来源: 题型:
查看答案和解析>>【题目】填写理由:
已知:如图,ABC是直线,∠1=115°,∠D=65°.
求证:AB∥DE.

证明:∵ABC是一直线,(已知)
∴∠1+∠2=180°( )
∵∠1=115°(已知)
∴∠2=65°
又∵∠D=65°(已知)
∴∠2=∠D
∴ ∥ ( )
相关试题