【题目】如图,在△ABC中,AB=AC=5,P是BC边上除点B、C外的任意一点,则AP2+PBPC= . ![]()
参考答案:
【答案】25
【解析】解:过点A作AD⊥BC于D,
∵AB=AC=5,∠ADP=∠ADB=90°,
∴BD=CD,PA2=PD2+AD2 , AD2+BD2=AB2 ,
∴AP2+PBPC=AP2+(BD+PD)(CD﹣PD)=AP2+(BD+PD)(BD﹣PD)=AP2+BD2﹣PD2=AP2﹣PD2+BD2=AD2+BD2=AB2=25.
故答案为25.![]()
首先过点A作AD⊥BC于D,可得∠ADP=∠ADB=90°,又由AB=AC,根据三线合一的性质,可得BD=CD,由勾股定理可得PA2=PD2+AD2 , AD2+BD2=AB2 , 然后由AP2+PBPC=AP2+(BD+PD)(CD﹣PD),即可求得答案.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图1,在正方形ABCD内有一点P,PA=3,PB=2,PC=1,求∠BPC的度数.
分析:根据已知条件比较分散的特点,我们可以通过旋转变换将分散的已知条件集中在一起,于是将△BPC绕点B逆时针旋转90°,得到了△BP′A(如图2),然后连结PP′,这时再分别求出∠BP′P和∠AP′P的度数.
解答:(1)请你根据以上分析再通过计算求出图2中∠BPC的度数;
(2)如图3,若在正六边形ABCDEF内有一点P,且PA=2
,PB=4,PC=2,求∠BPC的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某市政府大力扶持大学生创业.李明在政府的扶持下投资销售一种进价为每件20元的护眼台灯.销售过程中发现,每月销售量y(件)与销售单价x(元)之间的关系可近似的看作一次函数:
.(1)设李明每月获得利润为w(元),当销售单价定为多少元时,每月可获得最大利润?
(2)如果李明想要每月获得2000元的利润,那么销售单价应定为多少元?
(3)根据物价部门规定,这种护眼台灯的销售单价不得高于32元,如果李明想要每月获得的利润不低于2000元,那么他每月的成本最少需要多少元?(成本=进价×销售量)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,矩形纸片ABCD中,AB=6cm,AD=10cm,点E、F在矩形ABCD的边AB、AD上运动,将△AEF沿EF折叠,使点A′在BC边上,当折痕EF移动时,点A′在BC边上也随之移动.则A′C的取值范围为 .

-
科目: 来源: 题型:
查看答案和解析>>【题目】若∠1=∠2,则它们的补角____________(填“相等”,“不相等”,“无法确定”)
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,A,O,B三点在同一直线上,∠BOD与∠BOC互补.

(1)试判断∠AOC与∠BOD之间有怎样的数量关系,写出你的结论,并加以证明;
(2)OM平分∠AOC,ON平分∠AOD,①依题意,将备用图补全;
② 若∠MON=40°,求∠BOD的度数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】下列成语描述的事件:①水涨船高;②守株待兔;③水中捞月;④缘木求鱼.其中为随机事件的是_____.
相关试题