【题目】已知三角形三边长分别为2,x,13,若x为正整数,则这样的三角形个数为
A.2B.3C.5D.13
参考答案:
【答案】B
【解析】
根据“三角形两边之和大于第三边, 两边之差小于第三边”,可得x的取值范围,一一判断可得答案.
解:根据“三角形两边之和大于第三边, 两边之差小于第三边” 可得:13-2<x<13+2,即11<x<15,因为取正整数,故x的取值为12、13、14,即这样的三角形共有3个.
故本题正确答案为B.
-
科目: 来源: 题型:
查看答案和解析>>【题目】某玩具厂生产一种玩具,本着控制固定成本,降价促销的原则,使生产的玩具能够全部售出.据市场调查,若按每个玩具280元销售时,每月可销售300个.若销售单价每降低1元,每月可多售出2个.据统计,每个玩具的固定成本Q(元)与月产销量y(个)满足如下关系:
月产销量y(个)
…
160
200
240
300
…
每个玩具的固定成本Q(元)
…
60
48
40
32
…
(1)写出月产销量y(个)与销售单价x (元)之间的函数关系式;
(2)求每个玩具的固定成本Q(元)与月产销量y(个)之间的函数关系式;
(3)若每个玩具的固定成本为30元,则它占销售单价的几分之几?
(4)若该厂这种玩具的月产销量不超过400个,则每个玩具的固定成本至少为多少元?销售单价最低为多少元?
-
科目: 来源: 题型:
查看答案和解析>>【题目】已知2x-1=3,求代数式(x-3)2+2x(3+x)-7的值.
-
科目: 来源: 题型:
查看答案和解析>>【题目】如图,在梯形ABCD中,AD∥BC,AD=6,BC=16,E是BC的中点.点P以每秒1个单位长度的速度从点A出发,沿AD向点D运动;点Q同时以每秒2个单位长度的速度从点C出发,沿CB向点B运动.点P停止运动时,点Q也随之停止运动.当运动时间秒时,以点P,Q,E,D为顶点的四边形是平行四边形.

-
科目: 来源: 题型:
查看答案和解析>>【题目】下列说法:①相等的角是对顶角;②同位角相等;③过一点有且只有一条直线与已知直线平行;④直线外一点到这条直线的垂线段的长度,叫做点到直线的距离;其中正确的有( )个.
A.0B.1C.2D.3
-
科目: 来源: 题型:
查看答案和解析>>【题目】阅读以下两小题后作出相应的解答:
(1)“同位角相等,两直线平行”,“两直线平行,同位角相等”,这两个命题的题设和结论在命题中的位置恰好对凋,我们把其中一命题叫做另一个命题的逆命题,请你写出命题“角平分线上的点到角两边的距离相等“的逆命题,并指出逆命题的题设和结论;
(2)根据以下语句作出图形,并写出该命题的文字叙述.
已知:过直线AB上一点O任作射线OC,OM、ON分别平分∠AOC、∠BOC,则OM⊥ON.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为了考察甲、乙两种小麦的长势,分别从中抽取5株麦苗,测得苗高(单位:cm)如下: 甲:6、8、9、9、8;
乙:10、7、7、7、9.
(Ⅰ)分别计算两种小麦的平均苗高;
(Ⅱ)哪种小麦的长势比较整齐?为什么?
相关试题