【题目】如图1,已知△ABC中,AB=AC,点D是△ABC外一点(与点A分别在直线BC两侧),且DB=DC,过点D作DE∥AC,交射线AB于E,连接AE交BC于F.
(1)求证:AD垂直BC;
(2)如图1,点E在线段AB上且不与B重合时,求证:DE=AE;
(3)如图2,当点E在线段AB的延长线上时,写出线段DE,AC,BE的数量关系.
![]()
参考答案:
【答案】(1)见解析;(2)见解析;(3)DE=AC+BE.
【解析】
(1)根据线段垂直平分线的判定定理得到直线AD是BC的垂直平分线,证明结论;
(2)证明△ABD≌△ACD,得到∠BAD=∠CAD,根据平行线的性质得到∠BAD=∠CAD,等量代换得到∠BAD=∠EDA,根据等腰三角形的判定定理证明;
(3)仿照(2)的证明方法解答.
(1)∵AB=AC,DB=DC,
∴直线AD是BC的垂直平分线,
∴AD垂直BC;
(2)在△ABD和△ACD中,
,
∴△ABD≌△ACD,
∴∠BAD=∠CAD,
∵DE∥AC,
∴∠EDA=∠CAD,
∴∠BAD=∠EDA,
∴DE=AE;
(3)DE=AC+BE.
由(2)得,∠BAD=∠CAD,
∵DE∥AC,
∴∠EDA=∠CAD,
∴∠BAD=∠EDA,
∴DE=AE,
∵AB=AC,
∴DE=AB+BE=AC+BE.
-
科目: 来源: 题型:
查看答案和解析>>【题目】为进一步推进青少年毒品预防教育“627“工程,切实提高广大青少年识毒、防毒、拒毒的意识和能力,我市高度重视全国青少年禁毒知识竞赛活动.针对某校七年级学生的知识竞赛成绩绘制了如图不完整的统计图表.

知识竞赛成绩频数分布表
组别
成绩(分数)
人数
A
95≤x<100
300
B
90≤x<95
a
C
85≤x<90
150
D
80≤x<85
200
E
75≤x<80
b
根据所给信息,解答下列问题.
(1)a=____,b=____.
(2)请求出C组所在扇形统计图中的圆心角的度数.
(3)补全知识竞赛成绩频数分布直方图.
(4)已知我市七年级有180000名学生,请估算全市七年级知识竞赛成绩低于80分的人数.
-
科目: 来源: 题型:
查看答案和解析>>【题目】目前,我市城市居民用电收费方式有以下两种:
普通电价付费方式:全天0. 52元/度;
峰谷电价付费方式:峰时(早8:00~晚21:00)0. 65元/度;谷时(晚21:00~早8:00)0. 40元/度.
(1)小丽老师家10月份总用电量为280度.
①若其中峰时电量为80度,则小丽老师家按照哪种方式付电费比较合适?能省多少元?
②若小丽老师交费137元,那么,小丽老师家峰时电量为多少度?
(2)到11月份付费时,小丽老师发现11月份总用电量为320度,用峰谷电价付费方式比普通电价付费方式省了18. 4元,那么,11月份小丽老师家峰时电量为多少度?
-
科目: 来源: 题型:
查看答案和解析>>【题目】为测量操场上旗杆的高度,小丽同学想到了物理学中平面镜成像的原理,她拿出随身携带的镜子和卷尺,先将镜子放在脚下的地面上,然后后退,直到她站直身子刚好能从镜子里看到旗杆的顶端E,标记好脚掌中心位置为B,测得脚掌中心位置B到镜面中心C的距离是50cm,镜面中心C距离旗杆底部D的距离为4m,如图所示.已知小丽同学的身高是1.54m,眼睛位置A距离小丽头顶的距离是4cm,则旗杆DE的高度等于( )

A.10m
B.12m
C.12.4m
D.12.32m -
科目: 来源: 题型:
查看答案和解析>>【题目】已知数轴上三点M,O,N对应的数分别为﹣2,0,4,点P为数轴上任意一点,其对应的数为x.
(1)如果点P到点M点N的距离相等,则x= .
(2)数轴上是否存在点P,使点P到点M、点N的距离之和是10?若存在,求出x的值;若不存在,请说明理由.
(3)如果点P以每分钟1个单位长度的速度从点O向左运动,同时点M和点N分别以每分钟2个单位长度和每分钟3个单位长度的速度也向左运动.设t分钟时点P到点M、点N的距离相等,求t的值.

-
科目: 来源: 题型:
查看答案和解析>>【题目】已知下列函数: ①y=2﹣3x;②y=﹣
(x>0);③y=x﹣2;④y=2x2﹣1(x>1),
其中y随x的增大而增大的函数有( )
A.1个
B.2个
C.3个
D.4个 -
科目: 来源: 题型:
查看答案和解析>>【题目】如图,△ABC中,AB=AC,∠BAC=50°,P是BC边上一点,将△ABP绕点A逆时针旋转50°,点P旋转后的对应点为点P′.
(1)画出旋转后的三角形;
(2)连接PP′,若∠BAP=20°,求∠PP′C的度数.

相关试题